

Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

Alex van der Helm Onno Kramer Jos Hooft Peter de Moel Waternet / Delft University of Technology Waternet Waternet Omnisys/ Delft University of Technology

2nd IWA New Developments in IT & Water Conference, Amsterdam, the Netherlands, February 10th 2015

www.innovatie.waternet.nl

Waternet

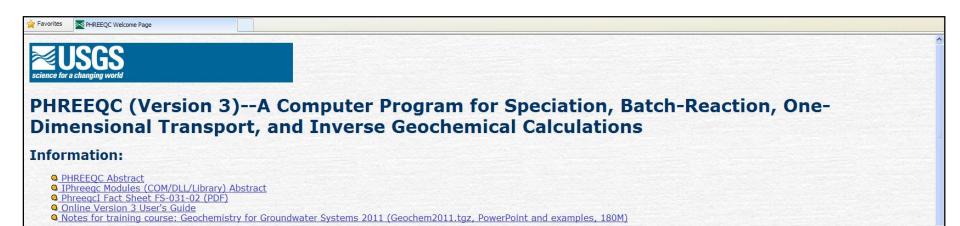
Water cycle company of Amsterdam:

- Drinking water production and distribution
- Waste water collection and treatment
- Water system management
- Water safety (dikes)
- Nautical and waterway control

Calculating in PHREEQC

pH – **Re**dox – **Eq**uilibrium – **C**alculations

- developed by US Geological Survey (USGS)
- scientific base, fully traceable
- adapted to newest scientific knowledge
- users can modify and extend the basics
- communication with MS Excel possible
- freely available



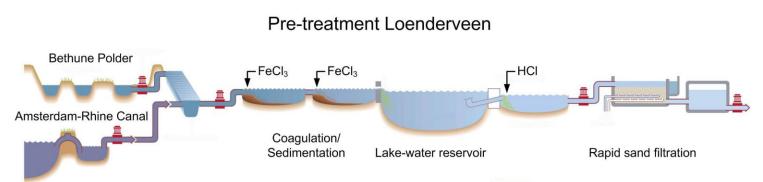
Calculating in PHREEQC

pH – **Re**dox – **Eq**uilibrium – **C**alculations

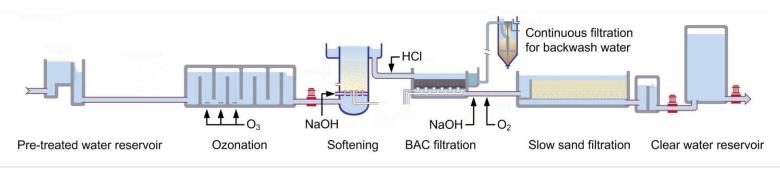
- 25 elements
- Liquid, gas and solid phase
- 8 databases with equilibrium constants

Stimela.dat

De Moel et al. (2014) developed PHREEQC database **Stimela.dat** for water treatment


Inert elements were defined for:

- Oxidation states of nitrogen NH_4^+ , N_2 , NO_2^-
- Anaerobic groundwater species Fe²⁺, Mn²⁺
- Anaerobic gases CH₄, H₂S, NH₃



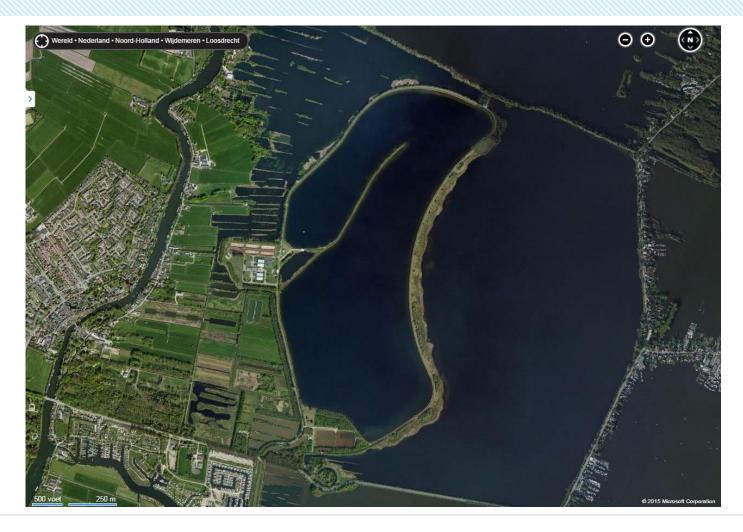
Drinking water treatment plant

Drinking water treatment plant Weesperkarspel

Amsterdam

(

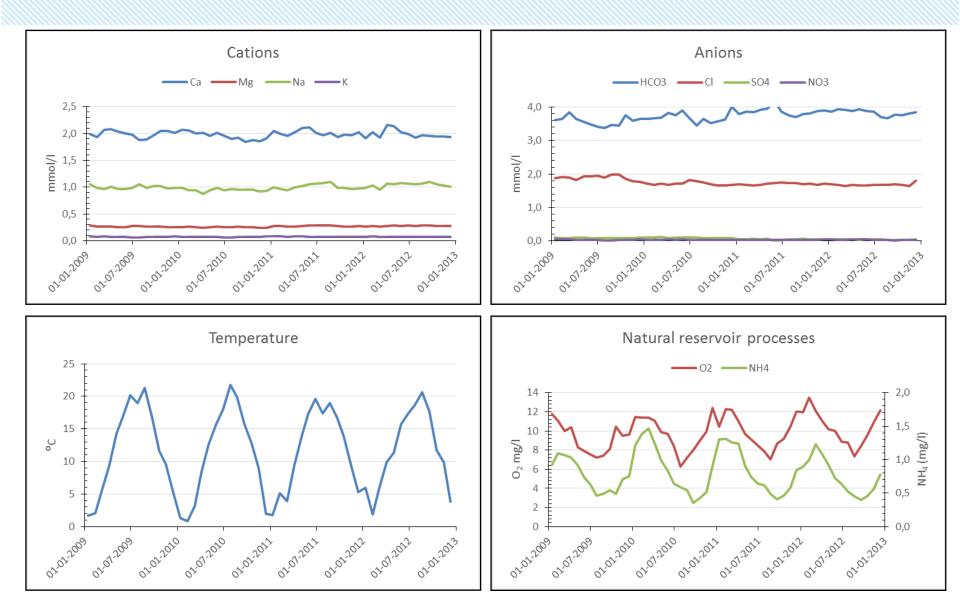
•

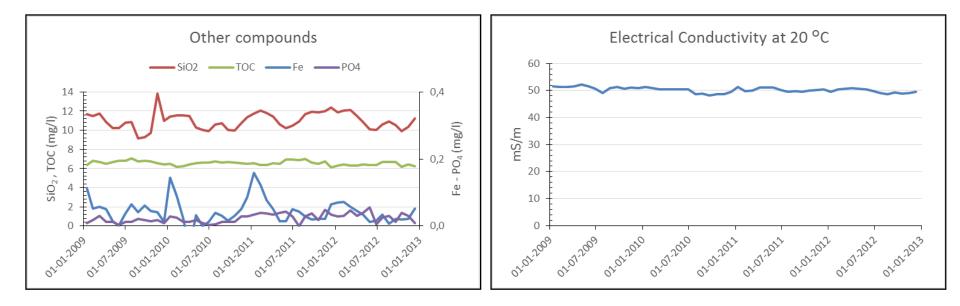

Drinking water treatment plant Weesperkarspel

Verkeer

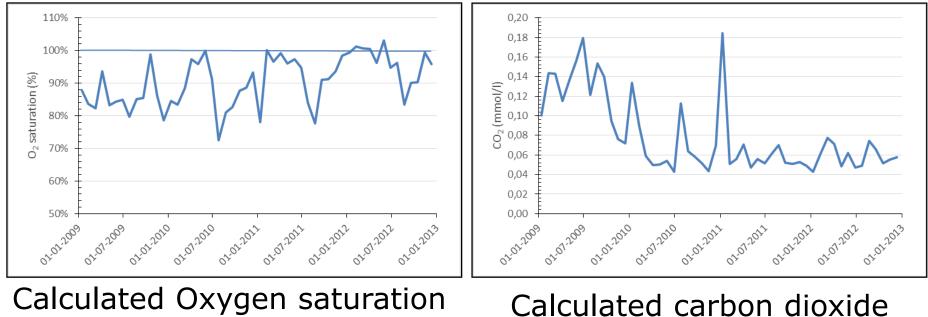
Pre-treatment Loenderveen

Source Bethunepolder

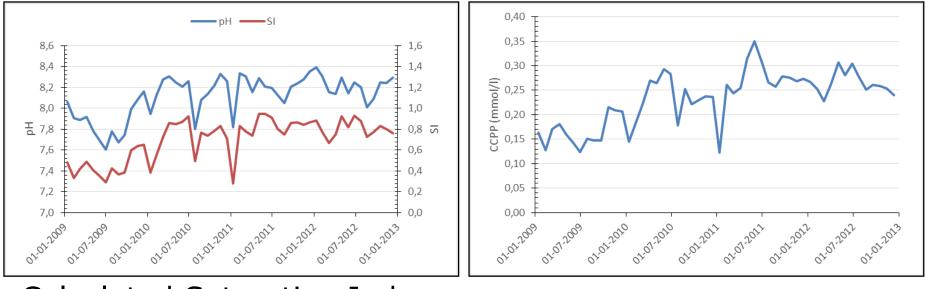




"Raw water" parameters

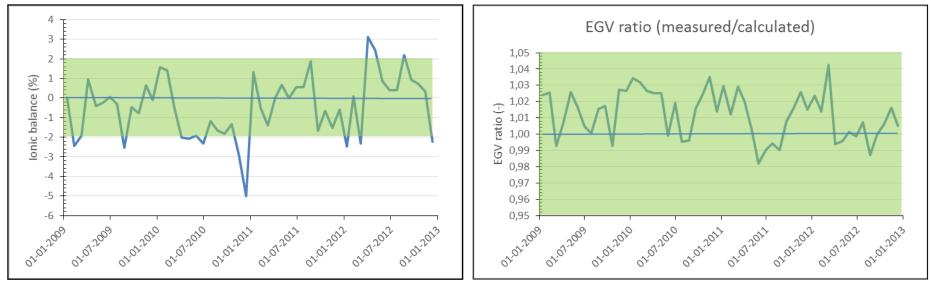

Raw water parameters

Raw water evaluation with Stimela.dat



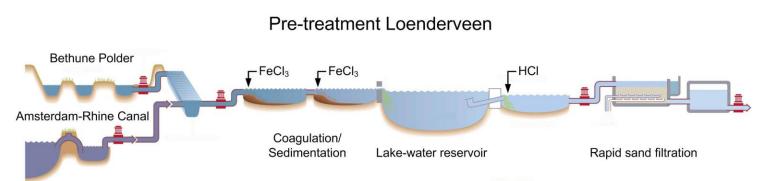
concentration

Raw water evaluation with Stimela.dat

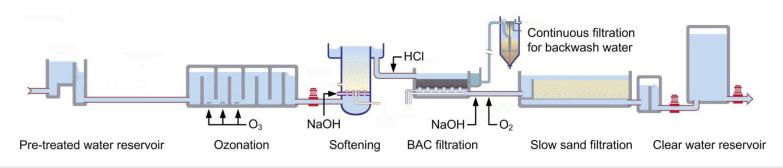

Calculated Saturation Index

Calculated calcium carbonate precipitation potential

Raw water validation with Stimela.dat

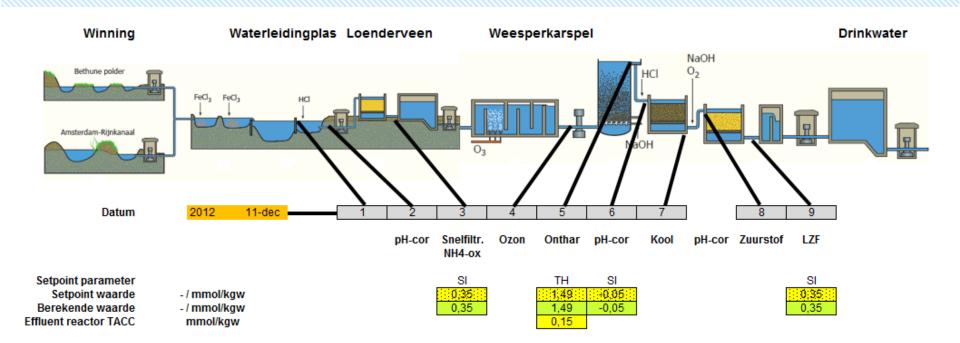

Calculated ionic balance

Calculated EGV ratio



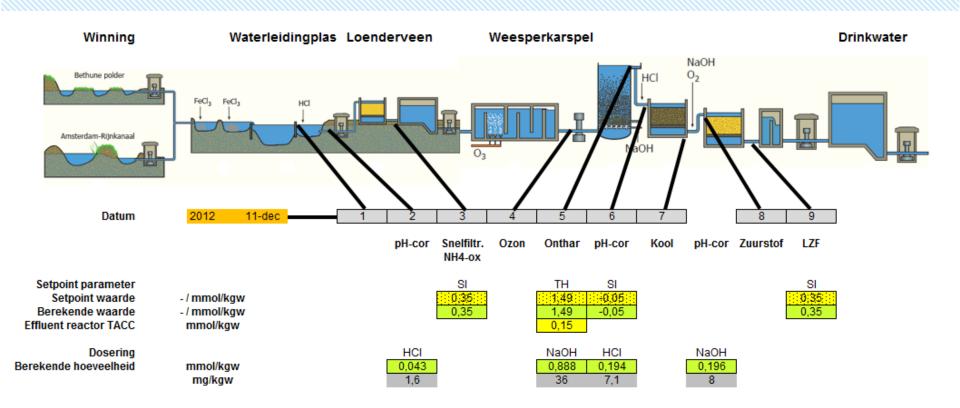
Treatment scheme

Drinking water treatment plant Weesperkarspel

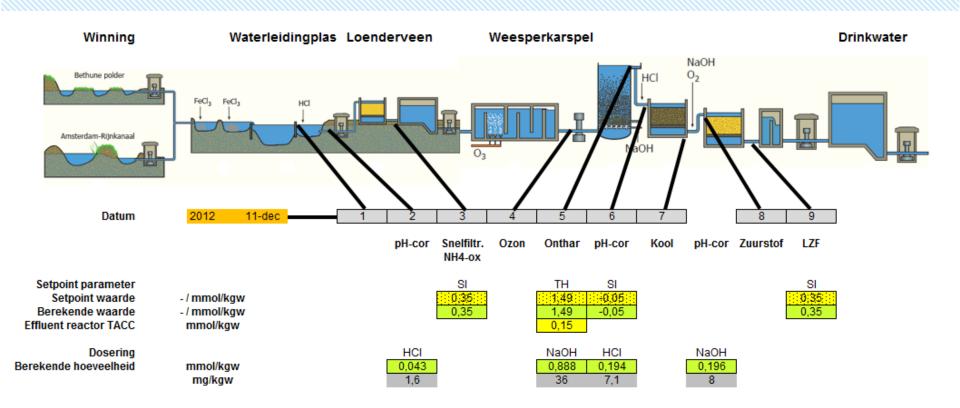


Modelled chemical processes

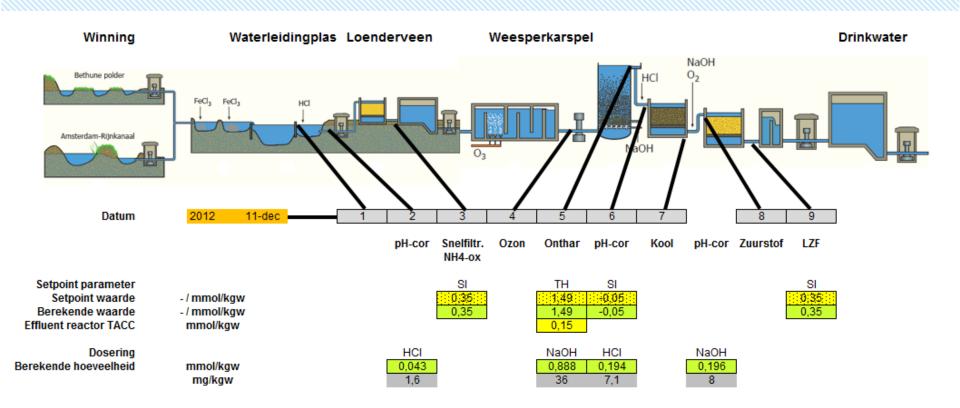
Process	Item	Reaction
pH control	HCI-dosing	$HCO_{3}^{-} + H^{+} + CI^{-} > CO_{2} + H_{2}O + CI^{-}$
Filtration	NH ₄ -oxidation	$NH_4^+ + 2O_2 + 2HCO_3^ > NO_3^- + 2CO_2 + 3H_2O$
Ozonation	O ₃ -reduction	$2 O_3 - > 3 O_2$
Softening	NaOH-dosing	$CO_2 + OH^- + Na^+ > HCO_3^- + Na^+$
	NaOH-dosing	$HCO_{3}^{-} + OH^{-} + Na^{+} > CO_{3}^{2-} + Na^{+}$
	CaCO ₃ -crystallization	$Ca^{2+} + CO_3^{2-} > CaCO_3(s)$
pH control	HCI-dosing	$CO_3^{2-} + H^+ + CI^ > HCO_3^{-} + CI^{-}$
AC filtration	DOC-oxidation	$CH_2O + O_2> CO_2 + H_2O$
pH control	NaOH-dosing	$CO_2 + OH^- + Na^+ > HCO_3^- + Na^+$
O ₂ control	O ₂ -dosing	$0_2 -> 0_2$
SS filtration	DOC-oxidation	$CH_2O + O_2> CO_2 + H_2O$



4 Setpoints in the treatment



4 control points in the treatment



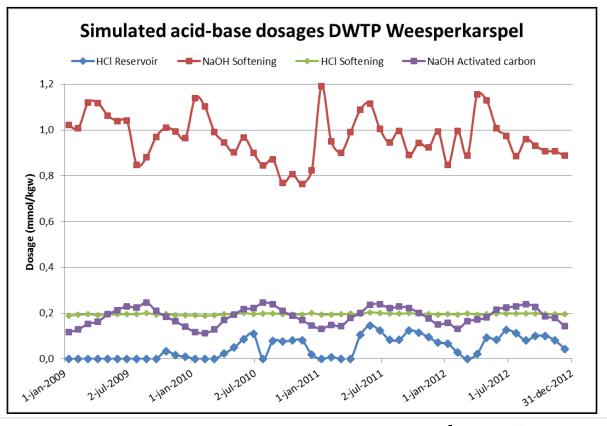
4 influencing processes in the treatment

Simulation with Stimela.dat

Run PHREEQC

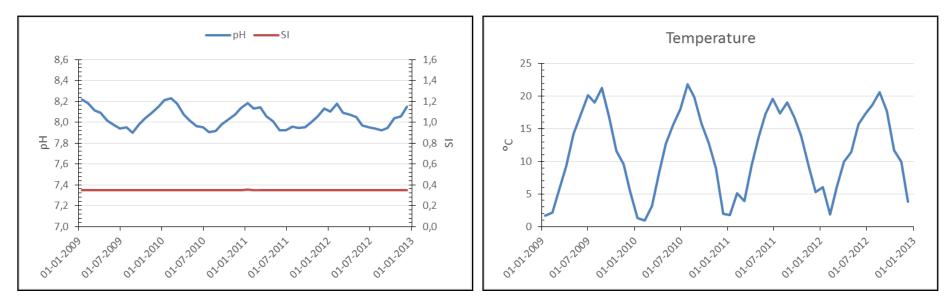
PHREEQC code in MS Excel

SOLUTIO	N_SPREAD -units -redox -water		mg/L O(-2)/O(0	ī		#ifO2=(#kg) then "pe"	else "O(-2)/	O(0)"										
number	temp	pН	Ca as Ca	Mg as Mg	Alkalinity as HCO3		Na as Na	K as K	Fe as Fe	CI as CI	S(6) as SO 4	N(+5) as NO3	P as PO4	O(0) as O	Si as SiO2	Org_c as C	density	Oxg	Ntg
1	3.800	8.298	77.640	6.565		0.775	23.280	2.854	0.053	64.012	4.878	2.486	0.009	12,160	11.213	8.254	1.000324	10xg(g)	-(1Ntg(g)
END	# Simulation	1																	
TITLE	Berekening USE solution Berekening	1	CCPP	EQUILIBR	RIUM_PHAS	SES 1;			dummy calcu cipitation Po				; SAVE so	olution	2	;END	# Simulati		2
	USE solution	2	;	EQUILIB	RIUM_PHA:	SES 2;	Calcite									;END	# Simulati		3
TITLE	Bepaling HC		ng ;	Eerst rea REACTIO		4, daarna H [N-3]H4 -			int-SI, indien i mmoles	noodzakelijk	(voorwaard	le via comn	nent marke ; SAVE so		22	;END	# Simulati		4
#	USE solution USE solution		:		RIUM_PHA: RIUM_PHA:		alcite	0.3569		0.001						; END ; END	# Simulati # Simulati		5 5
TITLE	HCI doserir USE solution USE solution	ng 2 3	:	REACTIO	de dosering : DN ; RIUM_PHA:	HCI			(voor CO2 mmoles	: ook onder	deel Verbrui	ik in Bedien	ingspaneel ; SAVE se		n) 3	; END ; END	# Simulati # Simulati		6 7
TITLE	Snelfiltratie USE solution USE solution	3	rydatie : :	REACTION	OC omzetti DN ; RIUM_PHA	[N-3]H4	-1 NH4 1; Calcite	0.042533	mmoles				; SAVE so	olution	4	; END ; END	# Simulati # Simulati		8 9
TITLE	Ozon doseri USE solution USE solution	4	:	REACTIO	ende reactie: DN ; RIUM_PHA:	O3 1;	omaatvorn Calcite		laan) <mark>:</mark> mmoles				; SAVE so	olution	5	; END ; END	# Simulati # Simulati		10 11
TITLE	Ontharding - PRINT; -select USE solution	ted_output	false ;	# uitvoer KINETIC:	en neerslag naar Selecte S ; DoseTH ; RIUM_PHA	ed output ; -formula	UIT (tusser		DoseTH niet 15		out) <mark>;</mark> ; m0 10.0 ;	; -bad_step	_max 100 ; - ; SAVE st		; -steps 10 6	s in 10 step : END	s # Simulati		12
	PRINT; -select USE solution		true ;	# uitvoer		ed output		alsnog uitvo	oer van laatst	e step)					·	;END	# Simulati		13
TITLE	Ontharding - USE solution USE solution	6	:	REACTIO	ien CaCO3 v DN ; RIUM_PHA:	CaCO31		0.1500	mmoles				; SAVE so	olution	7	;END ;END	# Simulati # Simulati		14 15
TITLE	HCI doserir USE solution USE solution	ng 7 8	:	EQUILIBR	ering tot setp RIUM_PHA: RIUM_PHA:	SES 4 ; Ca	alcite Calcite	-0,0500;	(voor CO2	een andere E <mark>: : :</mark> 10 ;	scel ontwik	kelen)	; SAVE se	olution	8	; END ; END	# Simulati # Simulati		16 17
TITLE	Koolfiltratie USE solution USE solution	8	mzetting : :	REACTIO	zetting: Org_ DN ; RIUM_PHA	Org_c -1;		02 -1;	<u></u>	🔆 mmoles			; SAVE so	olution	9	; END ; END	# Simulati # Simulati		18 19
TITLE	Bepaling Na USE solution		ering ;	REACTIO		Ċ02	0.0104	; 1.00 mm	dosering tot s ol 							;END	# Simulati	:	20
TITLE	NaOH dose USE solution USE solution	9	:	REACTIO	de dosering : DN ; RIUM_PHA:	NaOH	20-sim19) ir <mark>0 1958 :</mark> Calcite		<u>:00000;;;;;</u>	; 1.00 mm	ol		; SAVE so	olution	10	; END ; END	# Simulati # Simulati		21 22
TITLE	Langzame za USE solution USE solution		ie - TOC (REACTIO		Org_c -1;		O2 -1;	<u>:0:0:04:::::</u>	🔃 mmoles			;SAVE so	olution	11	; END ; END	# Simulati # Simulati		23 24


water

/innovation Results in process dashboard

Multiple simulations



Long term process evaluation

Multiple simulations

Effect on drinking water quality:

- Stable SI
- Slightly varying pH due to temperature

Conclusions

- Accurate chemistry available for process technologists with Stimela.dat in PHREEQC
- Chemical dosages can be optimised
- Improving chemical stability of drinking water
- User interface simply build and adapted in MS Excel

Plant wide chemical water stability modelling with PHREEQC for drinking water treatment

Alex van der Helm Onno Kramer Jos Hooft Peter de Moel Waternet / Delft University of Technology Waternet Waternet Omnisys/ Delft University of Technology

2nd IWA New Developments in IT & Water Conference, Amsterdam, the Netherlands, February 10th 2015

www.innovatie.waternet.nl