Aquatic Chemistry for engineers

Volume 1

Starting with PHREEQC for water treatment

P.J. de Moel J.C. van Dijk W.G.J. van der Meer

Challenge the future

Aquatic Chemistry for engineers

Self-study course on PHREEQXCEL for modelling water quality and water treatment

Volume 1

Starting with PHREEQC for water treatment

April 2015

P.J. de Moel J.C. van Dijk W.G.J. van der Meer

Content

1.	Introduction	
2.	 Using PHREEQXCEL 2.1 PHREEQXCEL as container system for PHREEQC 2.2 Installing the Windows COM module for PHREEQC 2.3 Running PHREEQXCEL 2.4 Running PHREEQXCEL apps 2.5 PHREEQXCEL as a Web service ('in the Cloud') 	9 9 10 11 14 15
3.	Drinking water in PHREEQC3.1Basic concept of PHREEQC3.2Pure water as default solution3.3Drinking water as solution (input)3.4Drinking water as solution (output)	16 16 17 19 22
4.	Controlling output4.1Lined output4.2Tabulated output4.3Multiple output4.4User defined functions4.5Output processing in Excel4.6User graphs in Excel	26 26 27 27 28 28 28 29
5.	 Water treatment 5.1 Concentration units 5.2 Electrical Conductivity (EC) and Total Dissolved Solids (TDS) 5.3 Mixing water 5.4 Dosing of chemicals 5.5 Neutralization and softening 5.6 Kinetics of processes 5.7 Aeration and gas transfer 	30 30 31 32 32 36 37 38
6.	 Groundwater and redox reactions 6.1 Redox conditions in water 6.2 Groundwater in PHREEQC 6.3 Mixing water from groundwater wells 6.4 Aeration and filtration 	41 41 43 45 46
7.	Next steps	48
ANNEXESAnnex 1Keywords for PHREEQC user inputAnnex 2Databases for PHREEQCAnnex 3Additional informationAnnex 4PHREEQXCELLABS AND TESTS		49 51 53 59 61 71
VOLUN	1ES	141

1. Introduction

PHREEQC

PHREEQC has become the 'de facto' standard for water chemistry in geohydrology. It is developed by the US Geological Survey (USGS), starting in 1980 with regular updates and extensions to date. Major aspects contributed to its success are:

- freely available (USGS website)
- active and continuous development
- scientific base, fully traceable
- adapted to newest scientific knowledge
- users can modify and extend the basics
- active interaction between developers and users (mostly scientists)
- large growing users group
- international assessment and recognition.

PHREEQC is famous in geohydrology but hardly known in water treatment. This might be caused by:

- requires above average skills in water chemistry
- high threshold for starters
- absence of scientific literature on water treatment with PHREEQC
- absence of educational material for using PHREEQC in water treatment
- requires modifications for practical application in water treatment (see Chapter 5 and 6).

PHREEQC has a large potential for application in water treatment. In its basic form all relevant chemical equilibriums for water chemistry are incorporated, including acid-base reactions, reactions for precipitation/dissolution, reactions for aeration/gas transfer, and redox reactions.

This course 'Aquatic Chemistry for engineers' will guide students at their learning path in using PHREEQC for water treatment.

The course assumes a minimum knowledge on water chemistry, as given in basic text books in water treatment (i.e. Drinking water - Principles and Practices, De Moel e.a., World Scientific 2006). The course is presented in four volumes:

- 1. Starting with PHREEQC for water treatment
- 2. Drinking water with PHREEQC
- 3. Waste water with PHREEQC
- 4. Industrial water with PHREEQC

Starting with PHREEQC

This volume ('Starting with PHREEQC for water treatment') gives the first steps for students in using PHREEQC for water chemistry. This course uses PHREEQXCEL as a container application or 'Graphical User Interface' for PHREEQC (or the Excel interface for PHREEQC).

Chapter 2 gives the backgrounds of PHREEOC and an introduction for using PHREEOXCEL.

In chapter 3 the chemical composition of an example drinking water is used for showing the basic use of PHREEQC (program basics, input, output).

Chapter 4 shows how PHREEQXCEL allows for pre- and post-processing of data.

The application of PHREEQXCEL for water treatment is briefly demonstrated in Chapter 5. Further details on chemistry and scientific backgrounds are presented in Volume 2, 3 and 4.

Chapter 6 deals with the modification of the database phreeqc.dat for redox reactions in order to make PHREEQC applicable in water treatment.

All these chapters include Labs on specific aspects, with questions to evaluate the gained skills. Chapter 7 shortly gives hints for further steps in using PHREEQXCEL and an overview of advanced resources on PHREEQC.

Chap-	Para-	PHREEQC keyword	Lab
ter	graph		
2	2.3	PHREEQXCEL as container system for PHREEQC	2.1
	2.4	PHREEQXCEL in real life process control	2.2
3	3.2	SOLUTION (<i>pure water</i>)	3.1
	3.3	SOLUTION (<i>drinking water</i>)	3.2 + 3.3
		SOLUTION_SPREAD (<i>drinking water</i>)	3.4
	3.4	SOLUTION (<i>output</i>)	3.5
4	4.1	PRINT / USER_PRINT	4.1
	4.2	SELECTED_OUTPUT / USER_PUNCH	4.2
	4.3	SELECTED_OUTPUT <n> / USER_PUNCH <n></n></n>	4.3
	4.4	CALCULATE_VALUES	4.4
	4.5	SELECTED_OUTPUT / USER_PUNCH in Excel	4.5
	4.6	USER_GRAPH in Excel	4.6
5	5.1	CHARGE for a specific solution component	5.1
	5.2	REACTION_TEMPERATURE	5.2
	5.3	MIX	5.3
	5.4	REACTION	5.4
		MIX	5.5
	5.5	EQUILIBRIUM_PHASES	5.6
	5.6	KINETICS / RATES	-
	5.7	GAS_PHASE	5.7
6	6.1	Redox reactions with pE as master parameter	-
	6.2	SOLUTION_MASTER_SPECIES / SOLUTION_SPECIES / PHASES	
		SOLUTION (anaerobic water)	6.1
	6.3	SOLUTION_SPREAD (<i>anaerobic water</i>) / MIX	6.2
	6.4	REACTION / KINETICS+RATES for converting inert elements	6.3
	6.5	-	6.4

The following table gives an overview of the PHREEQC keywords introduced per paragraph and Lab:

PHREEQC functions for transport modelling (TRANSPORT, ADVECTION), adsorption or surface complexation (SURFACE_SPECIES) and ion-exchange (EXCHANGE_SPECIES) are not part of this volume 'Starting with PHREEQC for water treatment'. These items will be discussed in Volume 2, 3 and 4.

2. Using PHREEQXCEL

PHREEQC and its predecessor PHREEQE were originally developed as a batch program for modelling of aquatic chemistry in ground water, interacting with different solids and gas phases. Even after more than three decades of updates, extensions and modifications a PHREEQC batch version still exists, nowadays available for different platforms (Windows, Linux, MacOS).

More recently, container systems or 'Graphical User Interfaces' have been developed such as 'Phreeqc Interactive' (USGS) and 'PHREEQC in adapted Notepad++' (Tony Appelo).

Since 2011 PHREEQC is also available as modules which enables its application within other hosting environments on different platforms. In Microsoft Window the module IPhreeqcCOM allows the incorporation of PHREEQC in program languages such as C++, Visual Basic, Fortran, and Python, or in applications such as Matlab and Excel. PHREEQXCEL uses this IPreeqcCOM module allowing to run PHREEQC calculations within Microsoft Excel.

In this chapter the concept of PHREEQXCEL is introduced.

In paragraph 2.1 the basic components of PHREEQXCEL are shown. Paragraph 2.2 gives an instruction for installing the IPreeqcCOM module.

Paragraph 2.3 demonstrates PHREEQXCEL by using input code from external sources such as USGS and Tony Appelo or by using self-developed input code. In paragraph 2.4 the possibilities for developing specific applications in PHREEQXCEL are presented. Paragraph 2.5 gives a brief presentation of using PHREEQXCEL 'in the cloud'.

2.1 PHREEQXCEL as container system for PHREEQC

Files of a PHREEQC Run

Calculations in PHREEQC are called 'Simulations'. One or more simulations are done in a single 'Run'. These simulations are defined in an input file, having the extension 'pqi' in PhreeqcI. An input file has to be created by the user.

A single Run uses the chemical definitions collected in a database. The default database for PHREEQC is 'phreeqc.dat', but any other chemical definition in PHREEQC-format can be used. A single Run creates output, by default as an output file, having the extension 'pqo' in PhreeqcI and the default file name 'phreeqc.0.out' in IPhreeqcCOM.

PHREEQXCEL as 'file container'

PHREEQXCEL is an alternative container system for PHREEQC. Its major components are shown in Figure 2.2. A PHREEQXCEL application contains all files of a single Run (.pqi, .dat, .pqo files in PhreeqcI) on different sheets in a single Excel file.

Figure 2.2 - PHREEQXCEL as container for the PHREEQC calculator

A PHREEQXCEL application is included in a macro-enabled Excel file (.xlsm file) containing 6 predefined sheets and 4 generic VBA (Visual Basic for Applications) subroutines. The Excel sheet names and VBA subroutines are shown in Table 2.1.

Sheet name	Function	IphreeqcCOM method or file
Run_Control	Run settings and Start button	-
Input	PHREEQC input code	[Ex1].pqi
Database	Chemical database for PHREEQC	stimela.dat
phreeqc.out	Lined output (PRINT)	phreeqc.[id].out
Output	Tabulated output (SELECTED_OUTPUT)	selected.[id].out
Messages	PHREEQC warnings and errors	GetWarningString()
		GetErrorString()
VBA subroutines		
RunPhreeqc()	Generic VBA program code for	RunFile()
	PHREEQXCEL applications	RunString()
Button1_Click()	Macro to start RunPhreeqc()	-
Button2_Click()	Macro to select an external Input file	-
Button3_Click()	Macro to select an external Database file	-

 Table 2.1 - Components of PHREEQXCEL applications

Running a PHREEQXEL application on a PC requires Microsoft Excel for Windows to be installed (Excel 2007 or later), as well as the IphreeqcCOM module for Windows (version 3.1.4 or later).

2.2 Installing the Windows COM module for PHREEQC

Download

The Windows COM module for PHREEQC can be downloaded from: http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/

The Windows COM module for PHREEQC requires one install file on a 32-bits Windows system and two install files on a 64-bits Windows system, as shown in Table 2.2.

Platform	Processor	File name			
Windows COM	32-bit	IPhreeqcCOM-3.1.7-9213-win32.msi			
	64-bit *	IPhreeqcCOM-3.1.7-9213-x64.msi			
1 P 1 P 2 I II	1 6 4 4 4 6 6 6 4				

Table 2.2 - Install files for the Windows COM module for PHREEQC

* Both 32-bit and 64-bit COM versions should be installed on 64-bit versions of Windows

The install file names will be changed for succeeding releases. It is recommended to use the latest release, since these releases might include resolved bugs, updated databases etc.

Installation

Installing the downloaded .msi files will (by default) create the following maps:

- on 32 bits Windows:	C:\Program Files\USGS\ IPhreeqcCOM 3.1.7-9213
- on 64 bits Windows:	C:\Program Files\USGS\ IPhreeqcCOM 3.1.7-9213
	C:\Program Files (x86)\USGS\ IPhreeqcCOM 3.1.7-9213
The following sub maps	s will be created:
- bin	IPhreeqcCOM dynamic link library (DLL) and type library (TLB) files
- database	9 chemistry database files in PHREEQC format, including phreeqc.dat
- doc	documentation files (pdf, chm), release notes
- examples	in sub map ./com/excel: runphreeqc.xls and phreeqc.dat.

Updating an installed COM module results in the removal of the old version, including its folders.

2.3 Running PHREEQXCEL

PHREEQXCEL runs are defined on the sheet Run Control which also contains a 'Run PHREEQC' button to start the Run. Figure 2.3 shows the sheet Run_Control of PHREEQXCEL applications. It also shows an Excel warning message to 'Enable Content'. Enabling allows Excel to run the VBA code in this Excel file, which is required for PHREEQXCEL applications. Excel security warnings depends on user's security settings.

Starting the PHREEQXCEL application runs the simulations defined in the user input code on sheet 'Input' using the PHREEQC database on sheet 'Database'. The results are presented on the sheets 'Output' and 'phreeqc.out'. Users might modify the names of these sheets, might use alternative sheets, or might use external files for Input and/or Database. External files are imported in related sheets, in order to fulfil the 'single file' container concept.

1 - 5. 2.	÷	n	hreeaxcelxlsm - Evc	4		? _ _ _ _ _
EILE HOME			REVIEW VIEW		TEAM	Sign in
HOWE	INSERT PAGE LATOUT P	OKMOLAS DATA	KEVIEW VIEW	V DEVELOPEN	TEAIVI	
I SECURITY WARNIN	NG Macros have been disabled.	Enable Content	\triangleright			×
G38 - :	$\times \checkmark f_x$					~
A	В	С	D		E	F G H I
1 Run Control 2 3 4 5 6 7 Input code 8 9 10	Excel-sheet (name Input	AC4E - PHREE	External file (op Select Inp	otional) ut File		PHREEQC Inside
11 Database 12 13 14 15 Return-sheet 16 17	Database phreeqc.out		Select Data	base File		
18 19 20		Run PHREE	QC			
21 22 23 24						
25 26 27 28 29 30	elft Delft University of Technology	Aquati for	ic Che engin	mistry eers	y	
READY	Control Input Databas	e phreeqc.out	Output Me	+ : •		

Figure 2.3 - PHREEQC calculations are defined and initiated on the sheet Run Control

Running an 'empty' PHREEQXCEL application (without any user input code, but with a valid Database) gives the output as shown in Figure 2.4. This empty application is distributed as AC4E-phreeqxcel.xlsm, which includes the default database for water treatment applications stimela.dat.

Figure 2.4 - Result of an 'empty' PHREEQXCEL Run (no input code)

🕅 🖬 🕤 · 🗟 · 📮		Lab_2_1.xlsm	- Excel			? 🗈 – 🗆 🗙
FILE HOME INSERT PAGE LAYOUT	FORMULAS DATA	REVIEW VIEW	DEVELOPER	TEAM		Sign in 🏳
A12 • : 🗙 🗸 fx						V
A B C D	E F	G H	I J	K L	M N	0 P 🔺
1 2 Reading input data for simulation 3	1.					
4 5 6 End of Bun after 2,699 Seconds.						
7						
8		1				
Run_Control Input Data	base phreeqc.out	Output Messag	ges 🕂 🗄	4		
READY 🛗					III III	+ 100%

Running external PHREEQC-code

PHREEQXCEL also runs external input code files generated in and for other container systems, such as 'Phreeqc Interactive' (USGS) and 'PHREEQC in adapted Notepad++' (Tony Appelo). A huge number of example files for these containers systems are available, which can be used in PHREEQXCEL:

- USGS: http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc3-html/phreeqc3-55.htm

- Tony Appelo: http://www.hydrochemistry.eu/exmpls/index.html

Student activity	Lab 2.1 – Running PHREEQXCEL
Study goals	- novice use of PHREEQXCEL
	 running external input files from other container systems (pqi, phr) using different databases for PHREEQC

Creating PHREEQC-code

Both 'Phreeqc Interactive' (USGS) as 'PHREEQC in adapted Notepad++' (Tony Appelo) include extended support for creating PHREEQC code.

'Phreeqc Interactive' (USGS) has been developed for the novice PHREEQC user. 'PHREEQC in adapted Notepad++' is focussed on users with a basic understanding of the PHREEQC concept.

PHREEQXCEL does not include such support for code generation. PHREEQXCEL users might use one of these container systems for code generation and import the code lines in the PHREEQXCEL sheet 'Input'. Alternatively, users may directly create their own code in the PHREEQXCEL sheet 'Input' using the extended help files and manuals for PHREEQC as reference systems.

Syntax for PHREEQC code can be found in the PHREEQC 3.1 Help files (phreeqc_31_USGS.chm and phreeqc_31_Appelo, see PHREEQXCEL documentation). Figure 2.5 give examples of both Help files.

Figure 2.5 - USGS and Appelo help files, for the keyword SOLUTION

These Compiled HTML Help files are modified with PHREEQC language modifications (as in version 3.1, not for bug fix version as in version 3.1.2). The PHREEQC manuals (pdf version as well as online version) are not modified for language modifications.

The USGS help file gives the full explanation of syntax options for all keywords. The Appelo help file gives only examples of syntax options with minor comments.

Suggestion: Try out both versions of PHREEQC help file to find your most appropriate version

2.4 Running PHREEQXCEL apps

Within PHREEQXCEL the imported code lines and the directly created code lines might be extended with the specific pre-processing options of Excel, for creating PHREEQXCXEL apps. These apps might also include post-processing of the results in Excel which will improve the presentation and interpretation of the calculated results.

PHREEQXCEL apps might be used by its developer but also by users without any knowledge of PHREEQC. Running PHREEQXCEL apps includes the following 3 steps:

- input of user specific data
- running the PHREEQC simulations
- presenting the results.

This concept is shown in Figure 2.6.

Figure 2.6 - Concept of PHREEQXCEL apps for practical applications in water chemistry

Student activity	Lab 2.2 – Running PHREEQXCEL apps
Study goals	- novice use of PHREEQXCEL
	 demonstrating the concept of PHREEQXCEL apps
	 demonstrating the use of PHREEQXCEL in process control

Figure 2.7 gives an impression of a PHREEQXCEL app(lication) in which the water quality in a surface water treatment plant is modelled (drinking water produced from river water after passing an equalizing reservoir with a detention time of some 60 days). The model calculates the water quality (macro-parameters) after each process step in the treatment plant, solely based on 25 raw water quality parameters and on 22 online flow measurements (9 for water and 13 for dosed chemicals, values for day-average). Each week the raw water quality is measured for 8 parameters, while the other 17 parameters are obtained from historical data, with internal validation. Each morning the model is used for the simulation of the plant performance during the last 14 days. The model results are used for:

- determination of set-points for pH control (SI calcite = 0) for the actual day
- presentation of plant performance during the last 14 days
- reference-values for all 27 inline water quality measurements, with alarms for excessive deviations

- reference-values for laboratory analyses for the model parameters, with a tendency for less analyses (less parameters, and less frequent)
- evaluation of alternative process operation (set-points, process parameters, etc.).

Figure 2.7 - PHREEQXCEL app for operators of a surface water treatment plant (from Lab 2.2)

More details on this applications are given in Lab 2.2.

2.5 PHREEQXCEL as a Web service ('in the Cloud')

PHREEQXCEL is also available as a web service. In this concept the Excel file of a PHREEQXCEL application is uploaded to the Stimela webserver, where the application is executed after which the completed file is returned to the user. This concept avoids the installation of the IPhreeqcCOM object on the computer of the user.

Dolft				👗 Dets de Noel 🛽 🕈
Obent				
		n Courses Organ	izations Hdp	
A. 0	allas (daud surdas) - Beleblas units	Contraction of Charman has		20 Mar 10 10/77
H O BUILD HILLING	and (construction) - containing worker	connecting + charge of	and a	
.≣ ¢				
	Drinking water -	Conductivity +	Charge balance	
Aquatic Chemistry for 👘	Conductivity (EC) + Charg	e balance		
Aquality Desensity for				
Course Jackson Size	Steps to do:			
Deres biller	 Hill in water quality data Press Run Phreeg; 			
Lachana	- Wait a few seconds for (updated	output		
factors.	- optional: if email-address is filed	: Send Excel file (full version)	by email	
NC 40 Hgb	 optional: If email-address is not f 	Fed: Download and Sale Ex	el file (full version)	
12100343				
Discussions	General			
Feedback	Temperature	t +c	11.5	
Disclamer	Oxygen	0, mgil.	110	
	Conductivity (FC 20 * C)	m5,im	28.4	
ORGANIZATION MANAGEPHENT	6-M			
Control Banel	Cabons	() mail	17.1	
Hy Control	Magnesium	Ng mg8	5.00	
	Poteodum	K mgt	2.0	
Construction Track				
Organization Tools	Anlong			
Organization Tools Evaluation	ACTION OF			
Organization Tools Evaluation → Grade Conter →	Hydrogen carbonate Chioddo	HOD, mgb.	2	
Organization Teols Brailuation	Hydrogen carbonate Chlorido Nitrato	HCO ₂ mgl Cl mgl NDy mgl	180 19 7.0	
Organization Tools Evaluation → Grade Conter → Users and Groups Customization →	Hydrogen cerbonete Chioddo Nitrato Sultato	HCO ₂ mg/L Cl mg/L NO ₃ mg/L SKI ₆ mg/L	180 19 7.0 7.0	
Organization Toole Brailuation Grade Contor Users and Groups Customization Packages and Utilities	Nitrate Ohiodis Nitrate Sultate Overall parameters	HCO, mgt Cl mgL NOy mgt SQ, mgt	7.0 7.0 7.0	

3. Drinking water in PHREEQC

PHREEQC is developed for modelling of aquatic chemistry in ground water, interacting with different solids and gas phases. Its sophisticated modelling and its extended interaction functions creates an 'inaccessible jungle' for water treatment engineers who likes to start using PHREEQC in the field of water and wastewater. The initial question for this 'starter' will be "How can my water sample be defined as a PHREEQC solution?"

In this chapter the basic form of a solution is demonstrated using drinking water as water sample. In paragraph 3.1 the basis concept of PHREEQC is presented. Paragraph 3.2 describes the default solution in PHREEQC, introduced as 'Pure water'. Paragraph 3.3 presents how to specify a simple drinking water sample in PHREEQC code using the keyword SOLUTION. Paragraph 3.4 gives the results from PHREEQC for this example water showing the specific data for solutions.

3.1 Basic concept of PHREEQC

Water is the solvent for a solution in Aquatic chemistry, and therefore also in PHREEQC. PHREEQC starts with a known mass of water (in kilograms, indicated as kgw). This solution (liquid) may interact with gas phases and solid phases as shown in Figure 3.1. PHREEQC covers all equilibrium reactions in the solution, as well as all equilibrium reactions to and from the gas and solid phases. A full mass balance over these phases is maintained by PHREEQC. PHREEQC keywords and default conditions for each phase are also shown in Figure 3.1.

Figure 3.1 - PHREEQC with phases, their default composition and related keywords.

For all elements the total amount of substance (moles) should be known, in all phases (gas, liquid/solution and solid). PHREEQC keeps track on the mass balances for each element over all phases. Also the mass balance of water is maintained, either by formation or by consumption in chemical reactions.

Concentrations are defined on molality basis, calculated from the amount of a specific solute (moles of solute, or element) divided by the mass of the solvent (kg water).

For input and presentation of results PHREEQC uses degree Centigrade (°C) as unit for temperature. Internally the Kelvin temperature (K) is used (K = °C + 273.15).

PHREEQC uses the obsolete standard atmosphere (1 atm = 101.325 kPa) as standard pressure. In this course this is assumed to be equal to the modern standard state pressure of 1 bar (100 kPa).

PHREEQC uses elements as main component indicators. These elements might have more than one oxidation state (called valence state in PHREEQC documentation) forming different species (ions and dissolved complexes) and different phases (solids or gases).

3.2 Pure water as default solution

Default values for solutions

As shown in Figure 3.1 the default solution in PHREEQC is 1 kg of 'Pure water' (H₂O) with a density of 1 kg/L, a temperature of 25 °C, a pressure of 1 atm, a hydrogen activity of 10^{-7} (pH = 7) and an electron activity of 10^{-4} (pE = 4).

Moreover PHREEQC uses solution default values for the parameters units (mmol/kgw) and redox (pE).

The parameters density, units and redox are only used once, in the 'Initial calculation' of the solution composition.

Density is required for the calculation of mass concentrations (per kg solution, per kg water) from initial concentrations given by volume (per L, m³ etc). Internally PHREEQC quantifies elements, species and phases by its total amount of substance (as mol) for 'bookkeeping' of mass balances per element. PHREEQC calculates concentrations in solutions from the amount of substance divided by the total mass of water (concentrations as mol/kgw, as in molality). PHREEQC gives its output per element, species and phases in molality (mol/kgw, relevant for equilibrium reactions) and in total amount of substance (moles, relevant for mass balances), regardless the parameter units. In trailing simulations the values for density and redox (i.e. pE) are taken from the result of the preceding simulation.

Calculations steps

PHREEQC requires two calculation steps to determine the composition of a solution:

- 1. Initial solution calculation, to determine the amounts of substance per element
- 2. Final solution calculation including electron balancing, to determine single values for pE and pH being the master variables for the composition of the solution bases on the amounts of substance per element.

The keywords EQUILIBRIUM_PHASES or REACTION without any further data can be used as a dummy simulation to start the 'final calculation' for the solution.

Student activity	Lab 3.1 – PHREEQXCEL for Pure water				
Study goals	 novice use of PHREEQC and PHREEQXCEL 				
	 learning PHREEQC's default Solution (pure water) 				
 mass concept in PHREEQC with total amount of substances (mo 					
	mass of water (kgw), and concentrations (mol/kgw) as in molality				
	 additional calculation results such as electrical balance of ions, 				
	Electrical Conductivity (EC), density of solution, water vapour pressure				

pH and pE as master variables for speciation

The parameters pH and pE are the master variables for speciation.

These parameters are defined as:

- $pH = lg{H^+}$ with ${H+} = activity of H^+ = \gamma_{H^+} * [H^+]$
- $pE = -lg\{e^-\}$ with $\{e_-\} =$ imaginary activity of free electrons in half-reaction.

These parameters and their representation in PHREEQC are:

- {H⁺} Activity of H+ (mol/kgw)
- [H⁺] Molality of H+ (mol/kgw)
- γ_{H+} Gamma as activity coefficient for H⁺ (-)
- e⁻ E (as element) and e- (as species)
- $\log \log(1 \log_{10})$

The parameter pE is related to the reduction potential E_H as:

- $E_H = ln(10) R T pE / F$ with $E_H =$ reduction potential (V = J/C), R = gas constant (8.314 J/mol.K), T = temperature (K), F = charge of 1 mol of electrons (96,485 C/mol),

The default solution (25 $^{\circ}C$ = 298.15 K and pE = 4) has a reduction potential E_H of 237 mV.

Reactions in pure water

Chemical reactions in pure water are:

From these chemical reactions PHREEQC calculates concentrations (molalities) for this water solution as:

-	[H+]	=	1.001	*	10-

⁷ mol/kgw (extreme low concentration)

- $[OH^-]$ = 1.013 * 10⁻⁷ mol/kgw (extreme low concentration) The calculated concentrations for H⁺ and OH- should be equal for a proper Electrical charge balance. PHREEQC can be used to determine that charge balance is achieved at pH of 6.997 (see Lab 3.1). PHREEQC calculates for this pH value:

-	[H ⁺]	=	1.006 * 10°′ mol/kgw	(extreme low concentration)
-	[OH ⁻]	=	1.006 * 10 ⁻⁷ mol/kgw	(extreme low concentration)
-	[H ₂ (aq)]	=	7.166 * 10 ⁻²⁶ mol/kgw	(negligible concentration)
-	[O2(aq)]	=	0 mol/kgw	(absent).
-	[H ₂ O]	=	55.51 mol/kgw	(solution is nearly 'all water')
The ca	lculated molality	of	H ₂ O reflects the molar mass (or gram formula weight gfw in PHR

The calculated molality of H_2O reflects the molar mass (or gram formula weight gfw in PHREEQC): 1 mol $H_2O = 1.008*2 + 16.0 = 18.016$ g = 0.018016 kg, or 1/0.018016 = 55.50622 mol H_2O/kg water. This value is also reflected in the calculated concentrations of the elements O and H.

Equilibrium for gases

 H_2O , H_2 and O_2 are also defined as gases $H_2O(g)$, $H_2(g)$ and $O_2(g)$ in stimela.dat (in PHASES) with their equilibrium reactions:

-	Water vapour:	H ₂ O	<>	H ₂ O(g)
-	Henry's law for H ₂ :	H ₂ (aq)	<>	$H_2(g)$
-	Henry's law for O ₂ :	$O_2(aq)$	<>	$O_2(q)$.

PHREEQC calculates the SI values in the solution for these three gases. For dissolved ideal gases the saturation index (SI) is defined as: $SI = lg(p_a)$, with p_a as the partial pressure of this gas in the gas phase. From the PHREEQC values for SI the partial pressure of these gases can be calculated:

					5
-	H ₂ O(g):	SI = -1.50	pa = 1	$10^{-1.50}$ =	0.031 atm
-	H ₂ (g):	SI = -22.04	p _a = 1	$0^{-22.04} =$	0.000 atm (negligible)
-	O ₂ (g):	SI = -39.20	p _a = 1	-39.20 =	0.000 atm (negligible).

The solution is in equilibrium with a gas phase with a partial pressure for H_2O of 0.031 atm. This pressure is the vapour pressure of water at 25 °C.

This concept shows that the concentration of a gas in a solution (aq) can also be expressed as a gas pressure being the equilibrium partial pressure of that gas in the gas phase (g).

Parameters for other temperatures

Density, pH, vapour pressure and Electrical Conductivity (EC) depend on the temperature of the solution. Table 3.1 shows the calculated values for these parameters in Pure water (see Lab 3.1).

Parameter			Temperature	
		0 °C	25 °C	100 °C
pH	-	7.469	6.997	6.119
Density	kg/L	0.99984	0.99704	0.95835
Vapour pressure	atm	0.006	0.031	0.989
Electrical Conductivity (EC)*	μS/m	0.93	5.51	131.32

 Table 3.1 - Composition of Pure water at different temperatures, as calculated with PHREEQC

* Specific Conductance (SC) in PHREEQC output and documentation

Freezing and boiling are not included in PHREEQC. It is assumed that water is a solution at all temperatures.

3.3 Drinking water as solution (input)

The chemical composition of an example drinking water is given in Table 3.2. With respect to water chemistry drinking water is much 'simpler' than (anaerobic) groundwater with its more complicated redox reactions, or natural seawater with its large content of dissolved solids.

 Table 3.2 - Composition of example drinking water

Parameter / Element		Unit	Value
Temperature	t	°C	10
Hydrogen ion activity	pН	-	7.3
Oxygen	O ₂	mg/L as O ₂	11
Calcium	Ca ²⁺	mg/L as Ca	56
Magnesium	Mg ²⁺	mg/L as Mg	5.6
Sodium	Na ⁺	mg/L as Na	7
Potassium	K+	mg/L as K	2
Bicarbonate *	HCO3 ⁻	mg/L as HCO₃	149
Chloride	Cl⁻	mg/L as Cl	9
Nitrate	NO ₃ -	mg/L as NO ₃	10
Sulphate	SO4 ²⁻	mg/L as SO₄	39

* Assume: [HCO₃-] = Alkalinity

PHREEQC input code

The example drinking water of Table 3.2 should be converted into a PHREEQC input file as shown in Figure 3.2 (from Lab 3.2).

Figure 3.2 - PHREEQC input code for the example drinking water (from Lab 3.2)

PHREEQC uses the keyword SOLUTION and SOLUTION_SPREAD for defining a solution, including its temperature, pressure and chemical composition. PHREEQC uses concentrations of chemical elements, such as Ca, Mg, Na, N and S as prime input parameters. These elements might be subdivided into oxidation states of an element, such as N(+5), S(+6) and O(0). The elements, oxidation states and their specifications are defined in the PHREEQC database (stimela.dat).

PHREEQC uses amount of substance (mole) as prime quantity for elements, and mass of water (kg, or kgw) as prime quantity for the solvent. The amount of substance for an element in solution is calculated from its molal concentration (molality in mol/kgw) and the mass of water (default 1 kg). Next to molal concentration PHREEQC accepts concentrations per mass of solution (kgs) or per volume of solution (L). The latter uses the density of solution (default 1 kg/L) to convert into molality. Within the SOLUTION data block all concentrations should be in the same group (either /kgw, /kgs, or /L). Within a group, either grams or moles may be used, and prefixes milli (m) and micro (u) are acceptable. The abbreviations for parts per thousand, "ppt"; parts per million, "ppm"; and parts per billion, "ppb", are acceptable in the "per kilogram solution" group. The conversion from mass concentration (g, mg) to molal concentrations (mol, mmol) is based on the molar mass (g/mol) of the element as specified in the PHREEQC database. It is recommended to include the chemical formula in the input for mass concentration, by example for 39 mg/L sulphate: 'S(6) 39 mg/L as SO4'. Special attention should be given to dissolved oxygen ('element O(0)') since PHREEQC uses moles O and not moles O₂, so 11 mg/L O₂ should be specified as 'O(0) 11 mg/L as O'.

Some elements in the drinking water analysis are defined in stimela.dat as a single oxidation state (Ca, Mg, Na, K and Cl), and others are defined in multiple oxidation states (C, N, S, H and O). The latter elements can be specified as total concentration for this element either or as concentration of (one or more of) its oxidation states.

The elements H and O have a special status in PHREEQC because of their multiple appearances (H_2O , H^+ , OH^- , O_2 , H_2) in the solution, and H_2O being the solvent in PHREEQC. Their data will always be within the output of PHREEQC.

The speciation of elements is calculated in PHREEQC based on pH and pE. The initial value for pE can be given either as input value or as the value for a specific redox couple. It is recommended to use 'redox O(-2)/O(0)' for drinking water solutions since drinking water always contains a minimum amount of dissolved oxygen O(0), which highly determines the pE-value in water. The O(-2) oxidation state is always included in PHREEQC being the oxidation state of oxygen in H₂O.

The keyword END marks the end of the input of a simulation, and starts the calculation/simulation. The 'end of the input file' is also regarded as END marker.

Student activity Study goals	 Lab 3.2 - PHREEQC input with SOLUTION novice use of PHREEQC and PHREEQXCEL solution quantities in PHREEQC (/L, /kgs, /kgw) element qualities in PHREEQC (g, mol with optional prefixes milli (m) and micro (u)) specific input items (Alkalinity, N(5), S(6), O(0)) PHREEQC comment marker (#) simulation input delimiter (END, (end-of-file))
---------------------------------	---

Input in Excel

Previous section shows that PHREEQC requires extended programming skills in order to transform chemical data of a water analysis into code for PHREEQC. For novice users or infrequent users this input code might be avoided by using Excel as 'input assistant' as shown in Figure 3.3 (from Lab 3.3).

Figure 3.3 - PHREEQXCEL input for the example drinking water (from Lab 3.3)

XI .	5-	⊘∓						AC4	E_Lab_3_3.x	lsm - Excel										?	Ť	- 0	×
FILE	HOM	INSERT	PAGE LAYOUT	FORMULAS	DATA	REVIEW	/ VIEV	V D	DEVELOPER	TEAN												Sigr	in 🗛
A1	Ŧ	: 🗙	✓ fx																				¥
4	Α		В	С	D	E	F	G	Н	1		J	ŀ	(L	М	N		0		Р	Q	
2 Drin	nking wa	ater composit	ion																				
3 3 4 Gen 5 6 7 Cati 8 9 10 11 12 13 14 4	ions C D D D D D D D S D D S D D S D D S D D S D D S D D S D D S D	emperature H alcium lagnesium odium otassium Ukalinity (as Hi hloride itrate ulfate	CO3)	t pH O2 Ca Mg Na K HCO3 Cl NO3 SO4	°C - mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L		10 7,3 11 56 5,6 7 2 149 9 10 39																
15 16 17 18 19			Ru	IN PHREEQC																			Ŧ
	•	Raw water	Run_Control	Input Data	base p	hreeqc.ou	ıt Out	tput	Message	25 (Ð	: [•			F	T (T	an n					D
KDADT																	# U	2 C					00 /6

The PHREEQXCEL file has been extended with an additional sheet 'Raw water'. The green section in this sheet (see Figure 3.3) includes the input parameters and their respective units, the yellow section contain the input values. The input values are linked to the PHREEQC code on sheet 'Input', converting of the numeric values into text strings.

The 'Run PHREEQC' button enables the start of the PHREEQC calculations.

Student activity	Lab 3.3 - PHREEQXCEL input with SOLUTION
Study goals	 novice use of PHREEQC and PHREEQXCEL
	 Excel as `input assistant' for PHREEQC

Input of multiple solutions

With the keyword SOLUTION_SPREAD concentrations of solutions can be inputted in a columnbased setup, which is useful for input of multiple solutions. This input feature is shown in Figure 3.4 (from Lab 3.4).

							-			-	-		-					
x∎	5-	⊘					AC4E	_Lab_3_4.xlsr	m - Excel							? 🗹	-	n x
FILE	HOM	IE INSERT	PAGE LAYOUT	FORM	JLAS DAT	ra revi	EW VIE	W DEVE	LOPER	TEAM							Sig	n in 🔍
			0															
D7	*	\pm \times	$\int f_x$ 7,1															~
- 🔟 A	В	С	DE	F	G	Н	1	J	К	L	М	N	0)	P	Q	F	<u>م</u>
1	Drinking	water sample	s															
3																		
4	Solution	General		Cations				Anions				Reference						
5	Nr	t	pH O2	Ca	Mg	Na	K	HCO3	CI	NO3	SO4	Description						
6		°C	- mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L							
7	1	10	7,1 11	56	5,6	7	2	149	9	10	39	Sample 1						
8	2	10	7,2 11	56	5,6	7	2	149	9	10	39	Sample 2						
9	3	10	7,3 11	56	5,6	7	2	149	9	10	39	Sample 3						
10																		
11																		
12			Run PHR	EEQC														
14																		
15																		-
	•	Raw water	Run_Control	Input	Database	phreeqc	out Ou	itput M	essa	+ : •								Þ
READY	1																-+	100 %

Figure 3.3 - PHREEQXCEL input for the multiple water samples (from Lab 3.4)

Student activityLab 3.4 - PHREEQXCEL input with SOLUTION_SPREADStudy goals- novice use of PHREEQC and PHREEQXCEL- Excel as `input assistant' for PHREEQC

3.4 Drinking water as solution (output)

The results of the PHREEQC calculations are presented on sheet 'phreeqc.out' as shown in Figure 3.5 (from Lab 3.5).

Figure 3.5 - Part of PHREEQC output for the example drinking water (from Lab 3.5)

x∎	∃ 5 • ∂• ∓					AC	4E_Lab_3_4.xlsr	m - Excel									? 📧	- 0	= ×
FI	LE HOME INSERT	PAGE LAYO	JT FORMU	LAS DA	TA REVIEW	VIEW	DEVELOPER	TEAM										Sign	n in 🔍
_		0																	
K1.	54 * : 🗙 🤇	$\int fx$																	~
	A B C	DE	F	G H	I J	К	LN	I N	0	Р	Q	R	S	т	U	V	W	X	
2 5	Reading input data for	simulation 1																	
3 -			-																
5	SOLUTION 1	10.0																	
7	pH	7.30																	
8	O(0) Ca	11.0	mg/1	L as O L as Ca															
10	Mg	5.6	mg/1	L as Mg															
11	Na	7.0	mg/l	L as Na															
13	Alkalinit	ty 149.0	mg/l	L as HCC	3														
14	Cl	9.0	mg/1	L as Cl															
16	S(6)	39.0	mg/1	L as NO3	,														
17	water	1																	
19	redox	O(-2)/	D(0)																
20	pe	4.0																	
21	density pressure	1.0																	
23	EQUILIBRIUM_PHAS	ES 1 Electro	n balancing																
24	PRINT alkalinit	ty TRUE		‡ sett	ing to includ	e the subs	ection for	Alkalinit	y in the	output									
26 - 27 F	Seginning of initial so	lution calcu	lations																
28 -																			
29 30 1	nitial solution 1.																		
31 32 -		Soluti	on compositi	on															
33																			
34	Elements	Molality	Moles																
36	Alkalinity	2.443e-003	2.443e-003																
37	Cl	1.398e-003 2.539e-004	1.398e-003 2.539e-004																
39	ĸ	5.116e-005	5.116e-005																
40	Mg N (5)	2.304e-004 1.613e-004	2.304e-004 1.613e-004																
42	Na	3.046e-004	3.046e-004																
43	O(0) S(6)	6.877e-004 4.061e-004	6.877e-004 4.061e-004																
45																			
46 - 47		Descrip	tion of solu	tion															
48			pH =	7.300															
40	Baw water	Run Control	Input	Database	phreegc.out	Output	Messages	(+)	:	4									
REA	DY 🔚					- and ac	,						.8	: 8	m		l •	-+_8	30 %

The output shows blocks from the consecutive stages in the Run:

- reading input data (per simulation)
- results of the initial solution calculations
- results of the final solution calculation (within 'batch-reaction calculations').

The final solution calculation gives in a 'real' PHREEQC solution, which is only characterized by its mass of water, total amount per Element (moles), pH, pE, temperature and pressure. All properties of the solution, such as speciation and saturation states, are diverted from these parameters and all further changes in the solution are reflected in changed values for these parameters.

The results of the solution calculations are divided into sections as presented in Table 3.3.

Output section	Description	Main purpose
Solution composition	Molality and moles for all elements ³	Input check for elements
Description of solution	Values for pH, pE, mass of water,	Input check for basic
	temperature and pressure ⁴	parameters
	Calculated overall parameters ⁵	Overall parameters
Redox couples ¹	pE and redox potential (Eh) for all redox couples	Electron balance in input
Distribution of species	Molality, activity, gamma and molar volume of all species, with total molality per oxidation state of an element ³	Speciation
Distribution of alkalinity ²	Contribution in alkalinity per dissolved species, as well as molality and Alkalinity-molality ratio	Acid-base buffering
Saturation indices	SI, IAP and K values for all phases	Saturation state related to gas

Table 3.3 - Output sections of solution calculations

¹ Only in initial calculation, when unbalanced redox couples are present

² Only in output if PRINT setting 'alkalinity = true'

³ In initial calculation: values only for the oxidation state given in the input code

⁴ Pressure is only printed if it differs from the default pressure of 1.0 atm.

⁵ In initial calculation: Total CO2 is included, if Alkalinity is given in the input

Student activity	Lab 3.5 - PHREEQC output for SOLUTION
Study goals	 learning sections in PHREEQC output
	 learning output parameters in each section
	- learning the differences between initial and final solution calculation

Solution composition

The section 'Solution composition' gives molality (mol/kgw) and amount of substance (moles) for each element, or its oxidation state. The 'initial calculation' converts the input values of each element (in mg/L) into molality (in mol/kgw) and into amount (in moles) based on the molar mass of each element (from input code or database), mass of water (from input code) and density of the solution (from input code).

Description of solution

The section 'Description of solution' includes some general parameters as presented in Table 3.4.

Parameter	Unit	Value	Remark
Hydrogen activity	pН	7.300	From final calculation (reaction result)
Electron activity	рE	14.663	From final calculation (reaction result)
Electrical Conductivity (EC)	mS/m	24.6	As Specific Conductance (SC) in µS/cm
(at actual water temperature)			
Water temperature	°C	10.00	From input
Density of solution	kg/L	0.99994	In g/cm ³ (calculated)
Volume of solution	L	1.00036	
Mass of water in solution	kg	1.000	From final calculation (reaction result)
Ionic strength	mmol/kgw	5.425	In mol/kg
Total alkalinity	meq/kgw	2.443	In eq/kg (calculated)
Total inorganic carbon (TIC)	mmol/kgw	2.764	Total CO2 in mol/kg
Electrical balance in solution	meq	-0.058	Total balance in solution in eq
			Not as concentration in eq/kg
Percent error (Cat-An) / (Cat+An)	%	-0.83	Not as (Cat-An) / (Cat+An)/2

 Table 3.4 Some results from Description of solution section for the example drinking water

PHREEQC uses parameter names and units which are not always equally used in the field of water treatment, as par example defined in 'Standard Methods for the Examination of Water and Wastewater', or other local standards and regulations.

PHREEQXCEL can overcome this hurdles since user specific parameters names and unit conversions can easily be applied in Excel.

Redox couples

The section 'Redox couples' in only presented in the 'initial solution calculation', and gives the calculated electron activity (as $pE=lg\{e\}$) and redox potential (in volts) for all redox couples. The example water only includes the O(-2)/O(0) redox couple as O(-2) is the oxidation state of oxygen in H₂O, and O(0) in dissolved O₂.

In the 'final solution calculations' all electrons are balanced over all redox elements, since free electrons cannot exist in a solution. Electron balancing forces chemical reactions to a single redox potential for the solution. These reactions might significantly change the composition of the solution which is reflected in a significant change of pH. A pH change of 0.01 or higher should be regarded as an unstable solution.

For the example water the final solution calculation did not change pH and resulted in a single pE-value of 14.663 which equals a redox potential of 824 mV ($E_H = pE * ln(10) * R * T / F$).

Distribution of species

The largest section in the output is the Distribution of species, which gives all the ion forms ('species') of the elements in the solution, also known as 'speciation'. Table 3.5 gives the number of species for each element, and its major species.

Element * (Oxidation state)	Molality (mmol/kgw)	Number of species	Major species	
O (0)	0.688	1	O ₂	50.0%
Са	1.398	6	Ca ²⁺	95.3%
Mg	0.230	5	Mg ²⁺	95.1%
Na	0.305	5	Na ⁺	99.7%
К	0.051	2	K+	99.9%
C (+4)	2.764	9	HCO3 [−]	87.1%
Cl	0.254	1	Cl ⁻	100.0%
N (+5)	0.161	1	NO3 [−]	100.0%
S (+6)	0.406	7	SO4 ²⁻	88.1%

Table 3.5 - Speciation for the elements in solution

* Excluded negligible redox elements C(-4), H(0), N(-3), N(0), N(+3), S(-2) and water elements

Table 3.5 shows that most elements have more than one species, with one dominant species (>85%). By example for Calcium the dominant species is Ca^{2+} , but also $CaHCO_3^{-}$, $CaSO_4^{0}$ (aq), $CaCO_3^{0}$ (aq) are found.

In water analyses most often the concentration of an element is reported by its major species. Multiple species per element are ignored but the method of analysis actually measures the concentration of an element. For example the reported analysis for sulphate includes the dissolved species $SO_4^{2^-}$, CaSO₄ (aq), MgSO₄ (aq) etc. Discarding this phenomenon will result in overestimating the saturation state of the solid phase CaSO₄ (s), since the real or actual concentrations of Ca²⁺ and $SO_4^{2^-}$ are lower than the reported values.

The Distribution of species section also shows Log Molality, Activity, Log Activity and Log Gamma which are related as: {Activity} = $\gamma *$ [Molality] or Log Activity = Log Gamma + Log Molality. Activities are used in all equilibrium calculations, while Molalities are used in all mass balance calculations.

Gamma (γ) is the scientific symbol for 'Activity coefficient' or 'Fugacity coefficient' for gases. Several model have been developed for determining this Activity coefficient. By default PHREEQC uses the 'Extended Debye-Hückel model' but other models might be used, depending on the settings and values of the applied database.

The activity coefficient in the example water is around 0.93 for monovalent ions (such as Na⁺, HCO₃⁻, and Cl⁻), around 0.74 for divalent ions (such as Ca²⁺, Mg²⁺, and SO₄²⁻) and around 1.002 for gases and uncharged complexes.

Molar volumes in the Distribution of species section are used for calculating density and volume of the solution and for pressure related parameters.

Distribution of Alkalinity

The section Distribution of Alkalinity is by default not included in the PHREEQC output file. Alkalinity is defined as the acid consumption (in meq/kgw) for titration to the 'end-point pH', which is around 4.5. Alkalinity can be calculated from:

Alkalinity = $[HCO_3^{-1}] + 2 [CO_3^{2-}] + [OH^{-}] - [H^{+}] + [CaHCO_3^{+}] + [MgHCO_3^{+}] + 2 [CaCO_3^{0}] + ...$

In laboratory practices the result of an Alkalinity measurement is often reported as HCO_3^- concentration.

The Alkalinity in the example water is 2.44 meq/kgw, while the sum of all HCO₃ species amounts to 2.43 mmol/kgw). This indicates the correctness of the applied assumption $[HCO_3^-] = Alkalinity$.

Saturation indices

The section Saturation indices gives the relation of the solution to solids and gases, defined under PHASES in the database. Saturation indices are calculated from:

- for solids: $SI = Ig(IAP/K_s)$ with IAP as Ion Activity Product and K_s as Solubility Product - for gases: SI = Ig(fugacity) with fugacity equals partial pressure, for ideal gases in equilibrium with the solution.

The section gives the name and the chemical formula (last column) for solids and gases defined in the database under PHASES. This section presents calculated values for SI, lg(IAP) and $lg(K_s)$ having the relation:

SI = LOG IAP - LOG K

A supersaturated solution contains ions for which the Activity Product IAP is larger than the Solubility Product K_s of a solid phase (IAP > K_s or SI > 0.0). An undersaturated solution will dissolve a solid in case this solid is in contact with the solution.

The SI value indicates the driving force to dissolution or precipitation of solids.

The example solution is undersaturated to all solids, since all values for SI are negative.

4. Controlling output

The output of PHREEQC is a huge dump of calculated values, as shown in previous chapter, which lacks easy access for user specific information.

PHREEQC has 2 basis routes for creating user controlled output:

- lined output included in the standard output file (such as phreeqc.out)
- tabulated output in a separate user defined output file (such as selected.out).

PHREEQXCEL presents the lined output in sheet 'phreeqc.out' and the tabulated output in sheet 'Output'. Tabulated output can be used for further data processing, like presentation in tables with user defined units and names, or using the extended possibilities of graphical presentation in Excel. Since December 2013 (version 3.1) multiple tabulated output streams can be defined.

PHREEQC uses four keywords for two output flows:

- lined output is controlled with keywords PRINT and USER_PRINT
- tabulated output is controlled with keywords SELECTED_OUTPUT and USER_PUNCH.

In this chapter the output options in PHREEQXCEL will be discussed.

In paragraph 4.1 the possibilities of lined output will be presented. The options for tabulated output will be explained in paragraph 4.2 and 4.3. Both output options might use user-defined functions (CALCULATE_VALUES) which is discusses in paragraph 4.4. Post-processing of data within Excel is touched lightly in paragraph 4.5. Paragraph 4.6 shows the creation of user defined graphs in Excel without the USER_GRAPH option in PHREEQC.

4.1 Lined output

Lined output of PHREEQC is controlled with keywords PRINT and USER_PRINT. PRINT and USER_PRINT controls the output starting with the simulation in which they are declared. Lined output is not suitable for further data processing.

In PHREEQXCEL lined output is used as a full report of all calculation results. This full report can be used to find relevant data or model mistakes which might be missed by looking only to user defined tabulated output.

Student activity	Lab 4.1 – Lined output from PHREEQC
Study goals	 learning to control output sections (PRINT)
	 learning to create user defined lined output (USER_PRINT)

PRINT

Settings following the PRINT keyword controls whether or not complete blocks such as 'Distribution of species' are printed in the output. Lab 4.1 gives a brief overview of the options available under the keyword PRINT.

USER_PRINT

The USER_PRINT keyword marks a -start/-end block in which BASIC statements can be used for printing to the output file. This allows for printing of additional text, user-defined quantities as well as user defined functions (via CALCULATE_VALUES). Lab 4.1 gives a brief overview of the concept of creating output using the Basis Interpreter in PHREEQC with its specific statements and functions for PHREEQC.

4.2 Tabulated output

PHREEQC also allows for tabulated output in which TAB separated items are displayed, with a new line for consecutive simulations and/or simulation steps. The content of this tabulated output can be set in the PHREEQC input file under the keywords SELECTED_OUTPUT and USER_PUNCH.

Student activity	Lab 4.2 – Tabulated output from PHREEQC
Study goals	 learning to control tabulated output (SELECTED_OUTPUT) learning to create tabulated output (USER_PUNCH)

SELECTED_OUTPUT

Settings following the SELECTED_OUTPUT keyword controls whether or not specific items should be printed, such as simulation number, solution number, pH, temperature and charge balance. Moreover specific items can be indicated as output such as the total concentration of specified elements, the concentration of specified species and the saturation indexes of specified phases. Lab 4.2 gives a brief overview of the options available under the keyword SELECTED_OUTPUT.

Items from the SELECTED_OUTPUT section are printed in a fixed order, regardless their order in the input block. List items such as Totals, Molalities, and Saturation indexes are printed in their order within these lists.

USER_PUNCH

The USER_PUNCH keyword marks a -start/-end block in which BASIC statements can be used for printing to the tabulated output. This allows for printing user-defined quantities as well as user defined functions (via CALCULATE_VALUES). Lab 4.2 gives a brief overview of the options available under the keyword USER_PUNCH.

Items of USER_PUNCH are always printed after the SELECT_OUTPUT items. Items from the USER_PUNCH sections are printed in their order in the Basic statements.

4.3 Multiple output

PHREEQC allows for diverting tabulated output into separate streams (since December 2013, version 3.1). These streams are defined by adding a number to the keywords SELECTED_OUTPUT and USER_PUNCH. For each additional output stream a new Excel sheet should be created named Output2, Output3 etc. Lab 4.3 shows how to work with multiple tabulated output streams.

Separated output might be beneficial for grouping parameters (columns) or for grouping simulations (rows). This concept allows for output tables which are specific for a group of simulations with different columns, enabling better post-processing of data in tables and/or graphs.

Student activity	Lab 4.3 – Multiple tabulated output streams from PHREEQC
Study goals	 learning to control multiple output streams (SELECTED_OUTPUT <n>)</n>
	 learning to create multiple output streams (USER_PUNCH <n>)</n>

4.4 User defined functions

PHREEQC allows for creation of user defined functions, collected under the keyword CALCULATE_VALUES. PHREEQC Basic statements are used to calculate additional parameters. Lab 4.4 shows how to create and print the results of user defined functions.

User defines functions might be beneficial for either unit conversion, such as Specific Conductance in mS/m, or creating parameters which are missing in PHREEQC, such as 'Redox potential' and concentrations for 'Total Anion' and 'Total Cation'.

Student activity	Lab 4.4 – User defined functions in PHREEQC
Study goals	 learning to create user defined functions (CALCULATE_VALUES)
	 learning to print the results of user defined values

4.5 Output processing in Excel

Excel allows for post-processing of PHREEQC results including calculations, text and number formatting, as well as graphical presentation of data.

This setup enables users to modify these results to their own personal preferences in language, parameter names, units etc. without any modification in the PHREEQC code.

Lab 4.5 shows how to use Excel for output processing and to create PHREEQXCEL applications for non-PHREEQC users. Figure 4.1 gives this single input-output application from this Lab, which resembles a typical PHREEQXCEL App.

Student activity	Lab 4.5 – Output processing in Excel
Study goals	 learning to use Excel functions and graphs for output processing
	 learning to create PHREEOXCEL apps for non-PHREEOC users

Figure 4.1 - Drinking water in a PHREEQXCEL App (from Lab 4.5)

4.6 User graphs in Excel

Excel provides a great range of functions for graphical presentation of data.

Lab 4.6 shows how to use Excel for user defined graphs without using the keyword USER_GRAPH as build-in option in PHREEQC. Figure 4.2 shows the graph from this Lab as well as the graph that has

been created using the keyword USER_GRAPH. The background of this graph will be discussed in paragraph 5.6.

Creating graph in Excel is more flexible than creating graphs in PHREEQC itself. Moreover most Excel users are already familiar with creating graphs.

Student activityLab 4.6 – User graphs in ExcelStudy goals- learning to use Excel graphs as user defined graphs for PHREEQC- showing the differences between Excel and USER_GRAPH

Figure 4.2 - User graphs from PHREEQXCEL and from PHREEQC (from Lab 4.6)

5. Water treatment

The development of PHREEQC is focussed on water chemistry in aquifers, dealing with its specific chemical conditions but also dealing with the specific language and habits in geochemistry. Water treatment has some different chemical conditions, and also its specific language and habits. In this course we will show how to apply some typical aspects of water treatment in PHREEQC. In this chapter we will deal only with aerobic water such as drinking water and surface water, in which redox reactions are not significant. Redox reactions will be discussed in Chapter 6.

In paragraph 5.1 we will discuss how the typical concentration units as applied in the water treatment industry (mg/L, ppm) can be obtained from PHREEQC concentration results (mol/kgw). In addition the aspects of charge balance will be appointed as a validation method for water quality analysis or a method for estimating non-measured components.

Paragraph 5.2 deals with Electrical Conductivity (EC) which can be calculated in PHREEQC and might be compared to a measured value as an important validation method for water quality analysis. Mixing water, a common phenomenon in water treatment and drinking water distribution, is discussed in paragraph 5.3.

Paragraph 5.4 gives some options for dosing chemicals in PHREEQC.

Equilibrium reactions as applied in softening and neutralization will be demonstrated in paragraph 5.5.

Paragraph 5.6 gives a short notice on process kinetics in PHREEQC.

Interaction between gases and water as applied in aeration and gas transfer are discussed in paragraph 5.7.

This volume of the course only presents a brief overview in how to use PHREEQC for water treatment. Water treatment applications will be discussed into more detail in Volume 2, 3 and 4. These volumes will be focused on aquatic chemistry in water treatment itself, without detailed instruction for program coding.

5.1 Concentration units

Concentration units

PHREEQC uses Molality (mol/kgw) as concentration unit, both for calculations and output. PHREEQXCEL allows for post-processing of these 'uncommon' concentration unit into units which are more familiar to the individual water treatment engineer.

PHREEQC accepts for input also mass concentrations (such as mg/L) and mass ratio concentrations (such as mg/kgs or ppm). Both types of concentration units require proper molar masses for conversion to amount of substance (mol), while the first type also require a proper value for the density of the solution.

Molar mass

Molar masses of elements, or 'Standard Atomic Weights' are published by CIAAW under the auspices of the International Union of Pure and Applied Chemistry (IUPAC) with bi-annual updates. (<u>http://www.ciaaw.org/abridged-atomic-weights.htm</u>). Data of their most recent version (2013) is included in the PHREEQC database stimela.dat. This database also shows values as used in the database phreeqc.dat.

Density

PHREEQC uses a sophisticated model for the density of a solution, based on molar volumes (see <u>http://www.hydrochemistry.eu/exmpls/molar_vol.html</u>). PHREEQC might be used to calculate this density, if mass concentrations (mg/L) are used as input values.

For conversion of Molality output (mol/kgw) into Molarity (mol/L) a 'Molality to molarity' factor can be calculated by PHREEQC. Further conversion into mass concentrations (mg/L) can be done using molar masses of elements and species.

Charge balance

Concentrations might also be expressed as molar equivalent (eq/L) or molal equivalent (eq/kgw) indicating the electric charge of dissolved components. The total equivalents in a solution should be zero.

The charge balance is an important indicator for the completeness and correctness of chemical analyses for a solution. According to Standard Methods 1030E a difference up to 2% of the total equivalent value is accepted if the anion charge is between 3.0 and 10.0 meq/L.

Charge balancing might be used to determine the concentration of a non-measured component, or to correct a dubious analysis. The PHREEQC keyword 'CHARGE' can be used to determine these concentrations.

The obsolete unit mg/L CaCO₃ for hardness and Alkalinity is a mass equivalent concentration (1 meq/L equals 50.043 mg/l as CaCO₃).

Unit conversions can easily be done in PHREEQXCEL, both for input as output values.

Student activity	Lab 5.1 - Concentrations, density and charge balance
Study goals	- learning to determine the density of a solution
	 learning to convert from and into molal concentrations learning to calculate the charge balance of a solution for validation learning to charge balance by additional or modified concentrations

5.2 Electrical Conductivity (EC) and Total Dissolved Solids (TDS)

Electrical Conductivity (EC)

PHREEQC includes a sophisticated model for the calculation of Electrical Conductivity (EC) whenever diffusion coefficients are included in the applied database (parameter -dw under SOLUTION_SPECIES). EC is called Specific Conductance (SC) in PHREEQC (see for further details http://www.hydrochemistry.eu/exmpls/sc.html).

The calculated EC-value is the conductivity at the actual temperature of the water.

Conductivity in water treatment is normalized to a standard temperature of 25 °C. Converting PHREEQC output to 25 °C can be done by either using the conversion table/formula as given by ISO 7888 in Excel, or by changing the 'REACTION_TEMPERATURE' in PHREEQC. The results of both methods will be different. The first method is recommended since its results are in compliance with the international accepted standard ISO 7888.

The calculated Electrical Conductivity can be an important indicator for the completeness and correctness of chemical analyses for a solution, if the Electrical Conductivity has been measured. According to Standard Methods 1030E the calculated over measured ratio should be between 0.9 and 1.1 for validated analyses.

Total dissolved solids (TDS)

PHREEQC lacks a function for the calculation of Total Dissolved Solids (TDS in mg/L). A user function for the calculation of TDS from molalities of all dissolved solids (non-gaseous components) is considered here as 'too elaborated'. Also the calculated density, volume and mass of water from PHREEQC will not give an accurate result for TDS.

With input concentrations in mg/L the Total Dissolved Solids can be easily be calculated in Excel.

Student activity	Lab 5.2 - Electrical Conductivity and Total Dissolved Solids
Study goals	- learning to determine the Electrical Conductivity at 25 °C (EC-25) - learning to apply the calculated EC-25 for validation
	- learning to calculate the Total Dissolved Solids content

5.3 Mixing waters

Mixing waters is a common phenomenon in water treatment and drinking water distribution. PHREEQC includes the keyword MIX which allows for mixing two or more solutions. The quantity of each solution might be specified as fractional part of that solution.

A classic example in drinking water is mixing of soft and hard water, both in equilibrium to calcite (SI = 0.0) resulting in aggressive water (SI < 0.0). This might be showed in a 'Tillmans' diagram' or in a hardness-pH diagram, both presented in Figure 5.1 being alternative diagrams for Figure 4.2.

Figure 5.1 - Mixing of soft and hard water with MIX (from Lab 5.3)

Student activityLab 5.3 – Mixing waters with MIXStudy goals- learning the basic use of MIX for mixing waters
- learning to understand and present calculation results

5.4 Dosing of chemicals

Dosing methods in PHREEQC

PHREEQC includes three basic methods for dosing of chemicals to a solution, each under a specific keyword:

- REACTION, for adding moles of any chemical to a solution
- MIX, for mixing a chemical solution with a water solution
- EQUILIBRIUM_PHASES, for adding a chemical until equilibrium is reached, or a given SI.

This paragraph will discuss the first two keywords. The third keyword will be discussed in chapter 5.5.

Dosing with REACTION

Under the keyword REACTION a certain amount of substance (moles) of a chemical is added to the solution. The added amount of substance will also influence the volume and density of the solution because of the molar volume and electric forces of its ions. Additionally the mass of water might be changed if H_2O is formed or consumed by the reactions. The changes in these parameters are calculated by PHREEQC in order to determine the changes in concentrations (molalities) and activities (see Figure 5.2).

Since the chemical formula of a chemical is used as input value, any chemical can be dosed with REACTION, i.e. NaOH, FeCl₃, but even fractional formulas such as Al_{0.2}Fe_{0,8}(OH)₃ etc.

Figure 5.2 - Dosing of chemicals with REACTION (from Lab 5.4)

In water treatment chemical dosing is expressed as a concentration (in mmol/L or mg/L). This concentration have to be multiplied by the volume of the solution to obtain the added amount. For practical reasons the added dose might be expressed as mmol/kgw, since we use 1 kg of water as the basic component of solutions. In this way the added dose (in mmol/kgw) equals the added amount of substance (in mmol).

With the keyword REACTION a mixture of chemicals can be added to the solution. This mixture is defined by the relative stoichiometry of each chemical. The added amount is defined by a list of reaction amounts, which might also be given as 'dosing steps'. The latter method allows for detailed calculations of all chemical changes caused by the reaction, as is shown in Figure 5.3. Not only can chemicals be added, also components can be removed from the solution, by adding a negative amount.

Excel allows for further combining calculated results with actual measured data, in tabular and graphical form.

Figure 5.3 - Results of stepwise dosing of chemicals with REACTION (from Lab 5.4)

Student activity Study goals

Lab 5.4 - Dosing of chemicals with REACTION

learning the basic use of REACTION for chemical dosing
 learning to understand and present calculation results

Dosing with MIX

Under the keyword MIX two or more solutions can be mixed. The quantity of each solution is defined by the fractions of the original solutions. The MIX concept has been developed for mixing two or more water streams or solutions, but can also be applied for dosing chemicals on the base of volumes or masses instead of concentrations as in REACTION.

A typical example is the measurement of Alkalinity by a titration method in which a strong HCl solution is added to the water sample until a certain pH (around 4.5) is reached (see Figure 5.4). The alkalinity is directly related to the volume or mass of dosed HCl. With stepwise mixing the change in water quality parameters can be visualized as is done Figure 5.4, which also includes so-called Gran-plots (<u>http://en.wikipedia.org/wiki/Gran_plot</u>) which might be based on H⁺-activity (as 10^{6-pH}) or EC. The Gran-plots show a switch-point at 24.4 mL HCl 0.1N corresponding to an Alkalinity of 2.44 meq/L.

Figure 5.4 - Dosing of chemicals with MIX (from Lab 5.5)

Figure 5.5 - Results of stepwise dosing of chemicals with MIX (from Lab 5.5)

Student activity	Lab 5.5 - Dosing of chemicals with MIX
Study goals	 learning the basic use of MIX for chemical dosing
	 learning to understand and present calculation results

5.5 Neutralization and softening

Reactions with EQUILIBRIUM_PHASES

Under the keyword EQUILIBRIUM_PHASES reactions will be initiated until equilibrium with the specified solid or gas is reached. This keyword also allows for specifying a certain Saturation Index (SI) instead of SI=0 at equilibrium.

Two basis reaction types might be applied:

- the specified solid or gas phase is the reactant
- an alternative solid, gas or chemical is the reactant.

Both reaction types might be considered a special type of dosing chemicals (adding or removing) as applied in water treatment. Examples are dissolution of calcium carbonate grains (CaCO₃ calcite) for neutralization of acid water and precipitation of calcium carbonate (CaCO₃ calcite) in chemical softening.

The keyword EQUILIBRIUM_PHASES might also be applied for pH control to a specified pH.

This type of reactions includes both solid phases as well as gas phases. However, equilibrium with gases will be discussed in paragraph 5.7.

Solid as reactant

In paragraph 5.4 alkaline chemicals were dosed in order to increase the pH of the water. However, the dosed amounts were much larger than required for neutralization (SI calcite = 0.0). A positive SI value indicates a precipitation potential of calcium carbonate, with a larger potential at higher SI values. Theoretically such precipitation of calcite (softening) might continue until equilibrium is reached (SI calcite = 0.0), in practice a certain super-saturation will remain (SI calcite 0.7-1.2). Under the keyword EQUILIBRIUM_PHASES four items per solid might be specified:

- the saturation value after reaction (as SI-value)
- the initial quantity of the solid phase (in moles)
- the 'freedom' of the reaction (precipitation, dissolution or both)

Figure 5.6 gives an example of using EQUILIBRIUM_PHASES in which only SI might be set by the user. The 'initial quantity' (0.01 moles) and 'freedom' (precipitation only) have been set in the PHREEQC code.

Figure 5.6 - Dosing of chemicals and precipitation with EQUILIBRIUM_PHASES *(from Lab 5.6)*
Student activity	Lab 5.6 – Reaction with solids in EQUILIBRIUM_PHASES
Study goals	- learning some basics of EQUILIBRIUM_PHASES for chemical reactions
	 learning to understand and present calculation results

The amount of calcium carbonate that might precipitate until equilibrium is called 'calcium carbonate precipitation potential' (CCPP), as defined in Standard Methods 2330C.

PHREEQC and PHREEQXCEL are successfully applied for the calculation of CCPP (see Annex 4).

Limestone filtration is a typical water treatment process in which limestone (calcite) is both the chemical as the 'controlling solid'. Neutralization or dissolution of calcite will only take place as long as the water is under-saturated in respect to calcite (SI calcite < 0.0).

Chemical as reactant

Under the keyword EQUILIBRIUM PHASES also alternative solids or chemicals might be applied to reach the specified equilibrium, as in:

EQUILIBRIUM PHASES 1 ; Calcite 0.0 NaOH 0.01

This code specifies a required SI value for calcite (SI = 0.0 or equilibrium) which should be achieved by dosing NaOH for which the available amount is set at 0.01 moles, or 10 mmoles. The latter corresponds to a concentration with a fixed mass of the solution (1 kg of water).

With this code the required dose of NaOH can be calculated in order to neutralize the water (SI = 0.0).

Chemical as reactant for pH control

Sometimes not a certain SI for calcite is required for neutralization but a specified pH.

For such case PHREEQC uses an imaginary solid pH-Fix, as in:

EOUILIBRIUM PHASES 1 ; pH Fix -8.0 NaOH 0.01

This code specifies a pH value of 8.0 which should be achieved by dosing NaOH for which the available amount is set at 0.01 moles, or 10 mmoles. This type of code is applied in Lab 5.7. More details on the application of this imaginary solid can be found in the PHREEOC documentation.

5.6 **Kinetics of processes**

PHREEOC is focussed on Equilibrium calculations as is reflected by the letters EO in its name. The time required to obtain equilibrium is not primarily part of PHREEQC but can be provided by using conversion or reaction rates based on the (changing) composition of the solution. Kinetic processes can be defined under the keyword RATES, in which the relation between reaction rate and quality parameters can be specified.

In the input code reference to such rate-formula is made under the keyword KINETCS.

Under the keyword RATES extended Basic programs might be developed, in order to calculate the amount of reactant that is converted in a specific time step.

As an example references is made to the PWP-model for calcite dissolution and precipitation which is included in the PHREEOC databases phreeqc.dat and stimela.dat.

However, this model does not give reliable results under near-equilibrium conditions (-1.0 < SIcalcite < 1.0) in particular when applied for modelling dissolution of natural limestone (see Figure 5.7). Improved kinetic models for calcite dissolution and precipitation will be presented in Volume 2.

Figure 5.7 - PWP model compared to dissolution of synthetic (Baker) and natural (Jura) calcite

Source: Vosbeck 2004

The concept of RATES can also be applied for non-timed calculations in which iterative adding of chemicals is to be applied until certain conductions are obtained. An example of this is the calculation of NaOH required in chemical softening to obtain a certain total hardness.

Kinetics of processes in water treatment will be discussed in Volume 2, 3 and 4. These volumes will be focused on aquatic chemistry in water treatment, without detailed instruction for program coding.

5.7 Aeration and gas transfer

PHREEQC also includes equilibrium reactions with gases, for solubility and speciation of dissolved gases as well as mass balances for interaction between a solution phase and a gas phases. PHREEQC provides for four methods to specify the concentration of a gas in a solution:

- input of the concentration of a gas under SOLUTION (such as mg/L, mmol/kgw etc.)
- input of the equilibrium pressure of a gas (as SI) under SOLUTION
- input by interaction under EQUILIBRIUM PHASES
- input by interaction with a gas phase under GAS_PHASE.

Applying PHREEQC for aeration and gas transfer processes require specification of a GAS_PHASE in order to keep track on mass balances in phase transfer, from gas to solution and visa versa.

All these forms of specifying gas concentrations and gas-solution interaction in PHREEQC are applied in the practicum of TU Delft course 'Fundamentals of water treatment'. Figure 5.8 and 5.9 give an impression of this practicum and the application of PHREEQC within this practicum. Further details are presented in Lab 5.7.

*Figure 5.8 - TU Delft Lab course on cascade aeration for CO*₂ *removal (with pH measurement)*

Student activity	Lab 5.7 – Gas transfer with GAS_PHASE
Study goals	- learning different options to specify a gas concentration in a solution
	 learning to use GAS_PHASE for mass balances in water-gas exchange

6. Groundwater and redox reactions

Previous chapter discussed application of PHREEQC for aerobic water such as drinking water and surface water, in which redox reactions are not significant. In this chapter redox reactions as found in groundwater treatment schemes will be discussed.

In paragraph 6.1 some basics of redox conditions in water are presented, using pE as the determining parameter, based on thermodynamic equilibria. However several redox reactions never reach their thermodynamic equilibrium in water treatment, because of kinetic limitations. Nearly all oxidation states of nitrogen are simultaneously encountered in groundwater treatment (NO₃⁻, NO₂⁻, N₂ and NH₄⁺). This is in contradiction with results obtained from PHREEQC.

Paragraph 6.2 discusses the application of PHREEQC for groundwater treatment, showing the differences between the databases phreeqc.dat, amm.dat and stimela.dat in particular the application of redox-uncoupled elements to deal with non-equilibrium conditions.

The practical application of the stimela.dat database for groundwater treatment is presented in three paragraphs. Paragraph 6.3 shows the mixing of water from multiple wells, paragraph 6.4 presents the modelling of groundwater treatment by aeration and filtration, while paragraph 6.5 deals with the biological nitrate removal in anaerobic conditions using methanol.

6.1 Redox conditions in water

As demonstrated in Chapter 3 speciation in water is mainly determined by the hydrogen activity (pH) and the electron activity (pE) or redox potential. In theory the value of pH varies from 0 to 14 (and even wider) but in water treatment practices pH is between 6 and 8 in over 99% of the cases. The variation in water treatment practices for pE is much larger, as shown in Figure 6.1. In here three zones are distinguished:

- drinking water with disinfectant, with 14<pE<22, determined by the disinfectant

- drinking water and aerobic water, with 12<pE<15, determined by O₂ content

- anaerobic groundwater, with -8<pE<13, determined by reduction products

Aerobic water is defined here as water with an oxygen content of over $0.001 \text{ mmol/L } O_2 (0.03 \text{ mg/L})$. Drinking water and nearly all kinds of surface water, like rivers, lakes, canals belong to this water type. Also some groundwaters fall into this category, often to be recognized by the absence of dissolved iron and dissolve manganese.

Figure 6.1 - pH-pe areas relevant for water treatment (in the background: dominant Fe species)

Figure 6.1 also shows that the value of pE is slightly influenced by pH, with lower pE at higher pH. Temperature has a similar effect on pE, with lower pE at higher temperature.

Oxidation states of nitrogen

In the natural environment nitrogen is found in four oxidation states: N(5), N(3), N(0) and N(-3). Major species for these states are respectively NO_3^- , NO_2^- , N_2 and NH_4^+ .

In aerobic water the dominant oxidation state is N(5) with NO_3^- as main representative species. However such water will also contain N(0) in the form of dissolved nitrogen gas N_2 .

Under anaerobic conditions NO_3^- is converted into N_2 , which is the chemical reaction in biological nitrate removal processes, and also the reaction in the natural environment at places where organic material 'rottens'. With ongoing conversion of organic matter N_2 is converted into NH_4^+ , being the typical component of anaerobic groundwater. This reduction process of nitrate is shown in the left part of Figure 6.2 with the related pe-values.

Theoretically, oxidation of NH_{4^+} should follow the reversed reaction path. However due to kinetic constraints this is not the case. In practice (biological) oxidation of NH_{4^+} will results in the formation of NO_2^- and NO_3^- as shown in the right part of Figure 6.2.

Figure 6.2 - Nitrogen oxidation states and pE in reduction of NO₃ and in oxidation of NH₄⁺

Temperature 10-25 °C, pH 7.2-8.2

Oxidation states of other groundwater components

The major components in treatment of anaerobic groundwater are, beside aforementioned forms of nitrogen, dissolved iron (Fe²⁺) and manganese (Mn²⁺) and the dissolved gases methane (CH₄) and H₂S. Figure 6.3 shows their dominant oxidation states. Based on the presence of these components the text book 'Drinking water – Principles and Practices' distinguishes on 'slightly anaerobic water' and 'deep anaerobic water'.

Figure 6.3 - Dominant oxidation states and pE for Mn, Fe, S and C

Temperature 10-25 °C, pH 7.2-8.2

6.2 Groundwater in PHREEQC

Redox reactions in PHREEQC

PHREEQC has been developed for groundwater flows in which redox reactions play a very important role. The original concept was based on single equilibrium constants for the conversion from one oxidation state into another, and on electron balancing over all elements and oxidation states as implicit part of all simulations, except for the 'initial solution'. As a consequence electron balancing might involve many unrealistic reactions. This drawback was overcome by modelling only one or two elements.

Aforementioned different reaction path in reduction and oxidation of nitrogen has resulted in the development of an additional database amm.dat in which NH₄⁺ was introduced as an inert, or redoxuncoupled element Amm. This database is distributed with PHREEQC next to its default database phreeq.dat.

PHREEQC version 3 has introduced redox-uncoupled elements for all gasses, to get more control over redox reactions, especially nitrogen gas (N_2) which is otherwise fully converted into Nitrate (NO_3^-) when oxygen is present. These redox-uncoupled elements are also included in the database amm.dat.

For water treatment modelling a restricted set of elements is considered unrealistic. Moreover the reaction times in treatment plant is too short to reach equilibrium states incomparable to the long retention times in groundwater flows. This has resulted into the development of the PHREEQC database stimela.dat, in which major groundwater species can be modelled as redox-uncoupled elements. This database allows for controlling the oxidation of these redox-uncoupled elements according to realistic reaction patterns in groundwater treatment plants.

Table 6.1 gives an overview of the major redox reaction in groundwater treatment processes, and the redox-uncoupled elements in the three named databases, under the keywords

SOLUTION_MASTER_SPECIES, SOLUTION_SPECIES AND PHASES. The formation reactions show that redox reactions not only include electrons (e-) but also hydrogen ions (H+), either as part of the reaction itself or as part of the oxygen reaction (O(0) to O(-2)), which alters pH.

Element		Formation reactions for species	Additional redox-			
			uncoupled elements			
		phreeqc am		amm	stimela	
(with sp	ecies)	(under SOLUTION_SPECIES)	.dat	.dat	.dat	
Ν	NO3-	-				
N(5)	NO3-	NO3-				
N(3)	NO2-	NO3- + 2 H+ + 2 e- = NO2- + H2O				[N+3]
N(0)	N2	2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O	Ntg	Ntg	Ntg	
N(-3)	NH4+	NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O		Amm	Amm	[N-3]
Mn	Mn+2	-				
Mn(2)	Mn+2	Mn+2] [Mn+2]
Mn(3) Mn+3 Mn+2 = Mn+3 + e-						
Mn(4)	Mn+4	MnO2:H2O + 4 H+ + 2 e- = Mn+2 + 3 H2O				
Fe	Fe+2	-				
Fe(2)	Fe+2	Fe+2				[Fe+2]
Fe(3)	Fe+3	Fe+2 = Fe+3 + e-				
S	SO4-2	-				
S(6)	SO4-2	SO4-2				
S(-2)	HS-	SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O	Sg	Sg	Sg	[S-2]
С	CO3-2	-				
C(4)	CO3-2	CO3-2				
C(-4)	CH4	CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O	Mtg	Mtg	Mtg	[C-4]
0	H2O	-				
0(-2)	H2O	H2O				
O(0)	02	2 H2O = O2 + 4 H+ + 4 e-	Oxg	Oxg	Oxg	

Table 6.1 - Redox reactions for major groundwater elements, in databases for PHREEQC

Redox modelling with stimela.dat

The stimela.dat database allows to run all input files originally developed for phreeqc.dat and /or for amm.dat, without any modification, as demonstrated in Chapter 2.

However, modelling water treatment processes including all measured species in a groundwater sample requires the application of the database stimela.dat. Based on extensive use of PHREEEQC for modelling water treatment processes, the following approach is highly recommended:

- modelling includes all species measured in the water sample to give realistic models

- all reduced species are modelled as redox-uncoupled elements

- preventing uncontrolled redox reactions by keeping pE>12, by assuming pO2 = 0.000001 atm

- checking that the change in pH in the `final solution calculation' is below 0.01 (no pH reactions)

- successive reactions per element convert the redox-uncoupled state to redox-coupled state.

This approach will be demonstrated in the following paragraphs.

Redox potential

Above mentioned modelling approach gives unrealistic pE values (or redox potential) in anaerobic (or anoxic) conditions. This prevents comparison of model values with measured redox potential values.

For these cases the redox couple which dominates the redox potential reading might be set to a redox-coupled element, in a single simulation, only for determining the redox potential according to PHREEQC.

Student activity	Lab 6.1 – Groundwater in PHREEQC
Study goals	 introducing modelling groundwater (SOLUTION)
	 evaluating redox-coupled versus and redox-uncoupled elements
	 showing pE values for different water compositions
	 demonstrating a 'dashboard' for model input and model results

6.3 Mixing water from groundwater wells

Nearly all groundwater treatment plants for the production of drinking water treat groundwater abstracted by more than one single well. Well fields containing 4 to 30 abstraction wells are commonly found. The water quality obtained from these wells will be different, even when these wells abstract water from the same aquifer (see Figure 6.4).

Figure 6.4 - Water quality in a well field, with <u>19 wells in 2 well systems (L and R)</u>

The actual production capacity of these groundwater treatment plants is controlled by regulating the number of wells in operation. As a consequence the water quality entering the groundwater treatment plant alters with each change of production capacity disturbing the treatment processes especially when chemicals are dosed at levels related to water quality parameters.

PHREEQC can be used to predict the actual water quality entering the groundwater treatment plant. The outcome of the model might be validated by inline measurements such as pH, EC and redox potential. These sensors measure 'sum parameters' lacking information on each individual parameter such as the content of calcium, alkalinity, iron, manganese, carbon dioxide, methane etc. A validated model will give detailed information on each relevant parameter.

PHREEQC models for a well field will use the keyword SOLUTION_SPREAD for the raw water quality, with redox-uncoupled elements except for oxygen. The water quality entering the treatment plant can be determined using the keyword MIX.

The actual capacity of each well as well as the model result can be presented in a 'dashboard' as shown in Figure 6.5.

Figure 6.5 - Dashboard for well field modelling (from Lab 6.2)

Student activity	Lab 6.2 – Groundwater well fields
Study goals	 introducing tabulated input for several wells (SOLUTION_SPREAD)
	 introducing mixing of water from a well field (MIX)
	 demonstrating a 'dashboard' for model input and model results

6.4 Aeration and filtration

Natural treatment of anaerobic groundwater for the production of drinking water will include aeration and filtration. In the aeration process oxygen (O_2) from atmospheric air is introduced in the water, while the content of other gases such as carbon dioxide (CO_2), methane (CH_4) and hydrogen sulfide (H_2S) will be reduced. In the filtration process dissolved iron (Fe2+) and manganese (Mn) are oxidized by O_2 and removed by precipitation of formed solids, enhanced by adsorption. Ammonium (NH_4^+), Nitrite (NO_2^-) and remaining methane (CH_4) and hydrogen sulfide (H_2S) are oxidized by bacteria. This clearly illustrates the need for a multi-parameter approach as offered by the database stimela.dat. The common approach is to start with redox-uncoupled elements except for oxygen.

Figure 6.6 gives typical natural treatment schemes for slightly anaerobic groundwater and for deep anaerobic groundwater. Further information on these treatment schemes are given in the text book 'Drinking water - Principles and Practices' (de Moel a.o., 2006).

Figure 6.6 - Natural treatment schemes for anaerobic groundwater

Modelling groundwater treatment processes in PHREEQC uses the same keywords as discussed in Chapter 5. Conversion of redox-uncoupled elements into redox-coupled elements can be done with the keyword REACTION or with more sophisticated Basic-programming using the keywords KINETCS with RATES.

PHREEQXCEL provides for extensive options for output presentation as shown in Figure 6.7. The presented concentrations are the sum of the redox-uncoupled and redox-coupled elements.

Figure 6.7 - Output presentation for aeration/filtration of groundwater (from Lab 6.3)

Student activity	Lab 6.3 – Groundwater treatment with aeration and filtration			
Study goals	 introducing groundwater treatment in a combined model 			
	- conversing redox-uncoupled elements (REACTION / KINETICS+RATES)			
	- demonstrating a 'dashboard' for model input and model results			

7. Next steps

After studying the previous chapters and finalizing the labs and tests the basic principles of using PHREEQXCEL for water chemistry modelling will be understood.

More advanced modelling is discussed in the trailing volumes of the series 'Aquatic Chemistry for engineers':

- Volume 2: Drinking water with PHREEQC
- Volume 3: Waste water with PHREEQC
- Volume 4: Industrial water with PHREEQC

These volumes deal with equilibrium and mass balance of most chemical reactions found in the respective fields of water treatment. The kinetics in water chemistry will be presented for some treatment processes. More detailed information on these volumes is given as last section of this Volume.

Further and actual information on 'Aquatic Chemistry for engineers' can be found on the TU Delft OpenCourseWare website for this course: <u>http://drinkwater.citg.tudelft.nl/AquaticChemistry</u>. Further information on the background of PHREEQC and additional literature is given in Annex 3.

ANNEXES

- Annex 1 Keywords for PHREEQC user input
- Annex 2 Databases for PHREEQC
- Annex 3 Additional information
- Annex 4 PHREEQXCEL

Annex 1 Keywords for PHREEQC user input

(adapted from PhreeqcI and PhreeqcI Fact Sheet)

Data for PHREEQC are entered through a series of keyword data blocks, each of which provides a specific type of information. For example, the SOLUTION keyword data block defines the chemical composition of a solution. PhreeqcI provides tabbed dialog boxes for each PHREEQC keyword. Data entry in PhreeqcI is grouped within in the following blocks (Toolbars):

- initial conditions
- forward and inverse modelling
- printing and numerical method
- stoichiometry and thermodynamic data

<u></u>	SOLUTION	Define the chemical composition of a solution
6	SOLUTION_SPREAD	Define the chemical composition of multiple solutions in a spreadsheet format
1	EQUILIBRIUM_PHASES	An assemblage of minerals and gases that react to equilibrium (or until exhausted)
Ī	GAS_PHASE	A finite reservoir of gas that reacts with a solution
	SOLID_SOLUTIONS	Solids that precipitate as mixtures of minerals, an important reaction for radio nuclides and other trace metals
×	EXCHANGE	One or more sets of reaction sites for exchangeable ions, an important reaction for major cations
3	SURFACE	One or more sets of sites that react by surface complexation, a major reaction for phosphorus, arsenic, and other trace elements
C	USE	Use the composition of previously defined or saved data block
<mark>ж</mark>	СОРҮ	Allows a data entity to be copied from one index to a new index or to a range of indices
×	DELETE	Delete reactants, including solutions, phases etc.
<u>ः</u>	RUN_CELLS	For running simulations in a specified set of cells
•	END	Ends the data input for a simulation step, starts the calculation for the preceding input, and prints the results

Initial conditions

Forward and inverse modelling

-	REACTION_TEMPERATURE	Changing the temperature of the reaction system
M	REACTION_PRESSURE	Changing the pressure of the reaction system
- 🚰	MIX	Mixing together specified fractions of solutions
8	REACTION	Addition and removal of specified elements from solution
Ι	INCREMENTAL_REACTIONS	Setting whether or not reaction steps for REACTION and time steps for KINETICS data blocks are incremental added to previous reactions steps
\$ t	RATES	BASIC language statements define rate expressions for kinetic reactions

К	KINETICS	Any non-equilibrium reaction, for which a rate expression can be formulated
ĩ	TRANSPORT	1D advection, dispersion, and reaction modelling
2	ADVECTION	1D advection and reaction modelling
f_{x}^{-1}	INVERSE_MODELING	Deduce mixing, mineral, and gas reactions that account for the chemical evolution of waters
Ŷ	SAVE	Save the composition following the batch reaction for use in subsequent reactions

Printing and numerical method

abc	TITLE	To include a comment for a simulation in the output file
¥6	PRINT	To select which results are written to the output file
7=	SELECTED_OUTPUT	To produce a selected-output file that is suitable for processing by spreadsheets and other data-management software
†€	USER_PRINT	To define Basic programs that print user-defined quantities to the output file
† B	USER_PUNCH	To define Basic programs that print user-defined quantities to the selected-output file
	DUMP	To write complete definitions of reactants to a specific file
7	KNOBS	To redefine parameters that affect convergence of the numerical method during speciation, batch-reaction, and transport calculations
	USER_GRAPH	To create charts of simulation results

Stoichiometry and thermodynamic data

3 7	SOLUTION_MASTER_SPECIES	To define the correspondence between element names and aqueous primary and secondary master species, including the alkalinity contribution of the master species, the gram formula weight used to convert mass units, and the element gram formula weight
3	SOLUTION_SPECIES	To define aqueous species with its chemical reaction, log K, and activity-coefficient parameters
(s)	PHASES	To define a name, chemical reaction, log K , and temperature dependence of log K for each gas component and mineral
×ĩ	EXCHANGE_MASTER_SPECIES	To define the correspondence between the name of an exchange site and an exchange species that is used as the master species in calculations
×■	EXCHANGE_SPECIES	To define a half-reaction and relative log K for each exchange species
38	SURFACE_MASTER_SPECIES	To define the correspondence between surface binding-site names and surface master species
3	SURFACE_SPECIES	To define a reaction and log K for each surface species, including surface master species
Pitz	PITZER	Invokes the Pitzer activity coefficient model
SП	SIT	Invokes the Specific ion Interaction Theory (SIT) activity coefficient model

Annex 2 Databases for PHREEQC

The basis chemical data for PHREEQC is collected in a database (.dat) file, in which data are entered through a series of keyword data blocks, similar to the user input file. All input files for PHREEQC are white-space delimited (tabs and/or spaces) ASCII text files.

Available databases

PHREEQC comes with 9 databases:

Database	Short description *)	Remark
phreeqc.dat	Derived from PHREEQE (Parkhurst and others, 1980),	Default databases for
	which is consistent with wateq4f.dat, but has a smaller	Phreeqc.
	set of elements and aqueous species	
amm.dat	The same as phreeqc.dat, except that ammonia	Called phreeqc.dat in
	oxidation state has been uncoupled from the rest of	'Notepad++ interface
	the nitrogen system; that is, ammonia has been	to PHREEQC version 3'
	defined as a separate component	(Tony Appelo)
wateq4f.dat	Derived from WATEQ4F (Ball and Nordstrom, 1991)	
llnl.dat	Derived from databases for EQ3/6 and Geochemist's	Since vs. 2.3 (2001)
	Workbench that uses thermodynamic data compiled	
	by the Lawrence Livermore National Laboratory	
minteq.dat	Derived from the databases for the program	No longer supported by
	MINTEQA2 (Allison and others, 1990)	U.S. Environmental
	(solubility of gases are not included)	Protection Agency
minteq.v4.dat	Derived from MINTEQA2 version 4 (U.S.	Since vs. 2.11 (2005)
	Environmental Protection Agency, 1998)	
	(solubility of gases are not included)	
pitzer.dat	Database for the specific-ion-interaction model of	Since vs 2.12 (2005)
	Pitzer (Pitzer, 1973) as implemented in PHRQPITZ	For modelling highly
	(Plummer and others, 1988)	saline, SO4 ²⁻ -rich
		solutions
sit.dat	Database implementing the Specific ion Interaction	Since vs 2.17 (2010)
	Theory (SIT) as described by Grenthe and others	
	(1997)	
iso.dat	Partial implementation of the individual component	Since vs 2.7 (2003)
	approach to isotope calculations as described by	
	Thorstenson and Parkhurst (2002, 2004)	

*) Source: Parkhurst and Appelo (2013), p. 27

Database	Responsible	File ID *)
	source	
phreeqc.dat	USGS	-
amm.dat	USGS	-
wateq4f.dat	USGS	# \$Id: wateq4f.dat 6895 2012-08-21 18:10:05Z dlpark \$
llnl.dat	Lawrence Livermore	# \$Id: IInI.dat 4023 2010-02-09 21:02:42Z dlpark \$
	National Lab	
minteq.dat	EPA	# \$Id: minteq.dat 3568 2009-07-13 16:15:14Z dlpark \$
minteq.v4.dat	EPA	# \$Id: minteq.v4.dat 794 2006-02-27 21:06:22Z dlpark
		\$
pitzer.dat	USGS	-
sit.dat	Amphos 21 /ANDRA	# Update note: ThermoChimie v.8.0 September 2011.
iso.dat	USGS	-

*) as supplied with PHREEQC vs 3.1.7

Databases used at TU Delft

The general rule of thumb at TU Delft is: always use stimela.dat (see Chapter 5 and 6). This database includes additional inert elements for NH_4^+ , NO_2^- , Fe^{2+} and Mn^{2+} and is maintained at TU Delft, as an inherited and updated version of phreeqc.dat. Moreover, it includes additional RATES for typical water treatment processes (under development).

Only if more elements and/or species are required it is recommended to use other databases, while realizing the consequences of the implicit redox reactions in PHREEQC to the redox equilibrium state (see Chapter 6).

Moreover it is recommended not to change one of the distributed phreeqc databases with own data, but include adjustments in user input files (via additional elements and definitions).

Content of PHREEQC databases

A PHREEQC database contains several sections. Each section starts with a PHREEQC keyword:

Keyword	Description
SOLUTION_MASTER_SPECIES	Defines elements, oxidation states, species, as well as
SOLUTION_SPECIES	chemical reactions of formation and redox reactions
PHASES	Defines minerals (solids) and gases, and their dissolution
	reaction
EXCHANGE_MASTER_SPECIES	Defines exchange sites, exchange species and their
EXCHANGE_SPECIES	exchange reaction
SURFACE_MASTER_SPECIES	Defines surface sites, surface species and their surface
SURFACE_SPECIES	reaction
RATES	Defines kinetics for reactions
END	Delimiter for simulations, starts the calculation of a simulation

SOLUTION_MASTER_SPECIES

SOLUTION_MASTER_SPECIES is used to define element names and oxidation states, atomic weights and the master species in a solution.

Master species are the ones primarily used in the calculations. They function as basis species for defining other ones in reactions with keyword SOLUTION_SPECIES.

Example lines:

	-	~		-
#1	2	3	4	5
0	Н2О	0.0	0	15.999
0(0)	02	0.0	0	
0(-2)	H2O	0.0	0.0	
Ca	Ca+2	0.0	Ca	40.078
Mg	Mg+2	0.0	Mg	24.305
Fe	Fe+2	0.0	Fe	55.845
Fe(+2)	Fe+2	0.0	Fe	
Fe(+3)	Fe+3	-2.0	Fe	
Cl	Cl-	0.0	Cl	35.45
С	CO3-2	2.0	HCO3	12.011
C(+4)	CO3-2	2.0	HCO3	
C (-4)	CH4	0.0	CH4	
Alkalinity	CO3-2	1.0	Ca0.5(CO3)0.5	50.043
S	SO4-2	0.0	SO4	32.06
S(6)	SO4-2	0.0	SO4	
S(-2)	HS-	1.0	S	

#	Item	Description
1	Element name	Elements with various oxidation states must be given as element
		followed by all related oxidation states.
		Element names must start with a capital letter, followed by lower case
		letters or underscores (no numbers, except for defining oxidation state)
2	Master species	Must be repeated with an identity reaction under SOLUTION_SPECIES
3	Contribution to	Master species' contribution to the alkalinity when titrating down to $pH =$
	alkalinity	4.5
4	Mass-mole	Chemical formula or gram formula weight for converting mass units in
	conversion	SOLUTION to mol
5	Atomic weight	Atomic weight of the element in column 1

Each master species should be repeated under SOLUTION_SPECIES to specify its parameters for the activity coefficient, the diffusion coefficient, and the molar volume.

SOLUTION_SPECIES

SOLUTION_SPECIES is used to define:

- the chemical (association) reaction
- log K and reaction enthalpy (or analytical expression for log K versus T)
- activity-coefficient parameters (-gamma)
- tracer diffusion coefficient (-dw) for aqueous species
- parameters for calculating the density of the solution (-Millero, -Vm)
- enrichment in the diffuse double layer (-erm_ddl)
- parameters for isotopic species.

The SOLUTION_SPECIES section starts with the identity reaction for master species, as in H = H+. Example lines:

```
SOLUTION_SPECIES
\mathrm{H}+~=~\mathrm{H}+
       -gamma 9.0
                    0.0
      -dw
             9.31e-9
e- = e-
H2O = H2O
Ca+2 = Ca+2
       -gamma 5.0
                    0.1650
       -dw 0.793e-9
       -Vm -0.3456 -7.252 6.149 -2.479 1.239 5 1.60 -57.1 -6.12e-3 1
# aqueous species
H2O = OH - + H +
       -analytic 293.29227 0.1360833 -10576.913 -123.73158 0 -6.996455e-5
       -gamma 3.5
                   0.0
              5.27e-9
       -dw
       -Vm -9.66 28.5 80.0 -22.9 1.89 0 1.09 0 0 1 # supert modified
2 H2O = O2 + 4 H+ + 4 e-
       -log_k -86.08
       -delta_h 134.79 kcal
               2.35e-9
       -dw
       -Vm 5.7889 6.3536 3.2528 -3.0417 -0.3943 # supcrt
```

PHREEQC can calculate the temperature dependence of log K with:

 Van 't Hoff's equation: log K_T = log K₂₉₈ + ΔH_r / (2.303 * 8.314e-3) * (1 / 298 - 1 / T) where log K_T is log K at temperature T (Kelvin), log K₂₉₈ is log K at 298 K (= 25 °C), ΔH_r is the reaction enthalpy (kJ/mol), entered after -delta_h.
 a polynomial, with coefficients following -analytical_expression.

PHREEQC adds the pressure term to log_k: $-= delta_v * (P - 1) / (2.3RT)$.

Gas-pressures and fugacity coefficients are calculated with Peng-Robinson's equation of state (EOS).

For definition of the activity coefficients see Parkhurst and Appelo (2013) and Parkhurst and Appelo (1999).

If gamma is not entered, the Davies equation will be used. To make the activity coefficient equal to 1, write: -gamma 1e5 0

The diffusion coefficient is used for calculating:

- multicomponent diffusion of individual solutes with keyword TRANSPORT
- the specific conductance (electrical conductivity) of the solution.

The density of the solution is calculated using the molar volumes of species, or alternatively using functions developed by Millero (2001).

Temperature- and pressure-dependent volumina of aqueous species are calculated with a Redlichtype equation (cf. Redlich and Meyer, Chem. Rev. 64, 221), from parameters entered with: -Vm a1 a2 a3 a4 W a0 i1 i2 i3 i4.

The Millero function $V(i) = a + b * tC + c * tC^2 + s(I) * I^0.5 + (d + e * tC + f * tC^2) * I$ for calculating the molar volume of species i, is entered with -millero a b c d e f, where a - f are the 6 parameters in the input file, tC is the temperature in °C, s(I) is the Debye-Hueckel limiting slope, and I is the ionic strength.

Identifiers no_check and mole_balance are used for a reaction that needs coefficients in the law of mass action which differ from the ones required by mass- and charge-balance.

PHASES

PHASES is used to defines the name, the dissolution reaction, log K, and temperature dependence of log K for minerals and gases, as well as the molar volume. Example lines:

```
PHASES
Calcite
       CaCO3 = CO3-2 + Ca+2
       -log k -8.48
       -delta h -2.297 kcal
       -analytic -171.9065
                                  -0.077993
                                                2839.319
                                                                71.595
       -Vm 36.9 cm3/mol # MW (100.09 g/mol) / rho (2.71 g/cm3)
CO2 (g)
       CO2 = CO2
       -log k -1.468
       -delta h -4.776 kcal
       -analytic 109.534 1.9913e-2 -6986.04 -40.83 669370
       -T_c 304.2 # critical T, K
             72.86 # critical P, atm
       -P c
       -Omega 0.225 # acentric factor
```

PHREEQC can calculate the temperature dependence of log K with:

Van 't Hoff's equation:

log $K_T = \log K_{298} + \Delta H_r / (2.303 * 8.314e-3) * (1 / 298 - 1 / T)$ where log K_T is log K at temperature T (Kelvin), log K_{298} is log K at 298 K (= 25 °C), ΔH_r is the reaction enthalpy (kJ/mol), entered after -delta_h.

- a polynomial, with coefficients following -analytical_expression

The molar volume of solids is derived from the density of the solid and its molair mass. The molar volume of a gas is used to calculate the pressure dependence of log_k, using the critical temperature (-T_c), critical pressure (-P_c) and the acentric factor (-omega) in the Peng-Robinson's equation of state (EOS).

Elements, oxidation states and species in stimela.dat

The most relevant elements	oxidation states	s and species ir	stimela.dat are:
	ordation blace		bennelandae al el

Element	Molar mass	Master	Major species
	(g/mol)	species	
Elements with sing	le oxidation state:		
Са	40.078	Ca+2	Ca ²⁺
Mg	24.305	Mg+2	Mg ²⁺
Na	22.990	Na+	Na ⁺
К	39.098	K+	K+
Cl	35.45	CI-	Cl-
Р	30.974	PO4-3	PO ₄ ³⁻ HPO ₄ ²⁻ H ₂ PO ₄ ⁻
F	18.998	F⁻	F ⁻
Si	28.085	H4SiO4	H_4SiO_4 (= $SiO_2.2H_2O$)
Elements with mult	ti oxidation states:		
C	12.011	CO3-2	$CO_2 CO_2(g) HCO_3^- CO_3^{2-} CH_4$
C(+4) = C(4)		CO3-2	$CO_2 CO_2(g) HCO_3^- CO_3^{2-}$
Alkalinity		CO3-2	HCO_{3}^{-} CO_{3}^{2-}
C(-4)		CH4	CH₄
Fe	55.845	Fe+2	Fe ²⁺ FeS FeCO ₃ Fe(OH) ₃
Fe(+2) = Fe(2)		Fe+2	Fe ²⁺ FeS FeCO ₃
Fe(+3) = Fe(3)		Fe+3	Fe ³⁺ Fe(OH) ₃
Mn	54.938	Mn+2	Mn ²⁺ MnOOH MnO ₂ Mn ₃ O ₄
Mn(+2) = Mn(2)		Mn+2	Mn^{2+} $Mn_{3}O_{4}$ (= 2 $MnO.MnO_{2}$)
Mn(+3) = Mn(3)		Mn+3	Mn ³⁺ MnOOH
Mn(+4) = Mn(4)		-	$MnO_2 Mn_3O_4$ (= $2MnO.MnO_2$)
S	32.06	SO4-2	SO_4^{2-} H ₂ S HS ⁻ H ₂ S(g)
S(6)		SO4-2	SO4 ²⁻
S(-2)		HS-	H_2S $HS^ H_2S(g)$
N	14.007	NO3-	$NO_3^{-} NO_2^{-} N_2 N_2(g) NH_4^{+}$
N(+5) = N(5)		NO3-	NO ₃ -
N(+3) = N(3)		NO2-	NO ₂ -
N(0)		N2	$N_2 N_2(g)$
N(-3)		NH4+	NH_4^+ NH_3 $NH_3(g)$
H	1.008	H+	H_2O H_2 H^+ OH^-
H(0)		H2	H ₂
H(1)		H+	H ⁺ OH ⁻
0	15.999	H2O	H_2O $H_2O(g)$
O(0)		02	$O_2 O_2(g)$
0(-2)		H2O	H ₂ O
Elements with inert	t (redox-uncoupled)) state:	
Hdg	2.016	Hdg	H_2 $H_2(g)$ (inert)
Oxg	31.998	Oxg	O ₂ O ₂ (g) (inert)
Ntg	28.014	Ntg	$N_2 N_2(g)$ (inert)
[C-4]	12.011	[C-4]H4	CH4 CH4(g) (inert)
[Fe+2]	55.845	[Fe+2]+2	Fe ⁺² (inert)
[Mn+2]	54.938	[Mn+2]+2	Mn ⁺² (inert)
[S-2]	32.06	H2[S-2]	H_2S $H_2S(g)$ (inert)
[N-3]	14.007	[N-3]H4+	$NH_4^+ NH_3 NH_3(g)$ (inert)
[N+3]	14.007	[N+3]O2-	NO ₂ ⁻ (inert)

Table does not include the single oxidation state elements (with master species) E (e-), Al (Al+3), Ba (Ba+2), Sr (Sr+2), B (H3BO3), Li (Li+), Br (Br-), Zn (Zn+2), Cd (Cd+2), Pb (Pb+2) Table does not include the multi oxidation state elements (with master species) Cu (Cu+2), Cu(+2) (Cu+2), Cu(+1) (Cu+1)

Table does not include the redox-uncoupled gases Mtg (Methane, CH₄) and Sg (Hydrogen sulfide, H₂S), specified as single element species.

All elements and element oxidation states can be found in the first column of the SOLUTION_MASTER_SPECIES. The related master species are given in the second column. All solute species (master species and other species) can be found following the '=' sign in each reaction line of SOLUTION_SPECIES.

Annex 3 Additional information

Further and actual information on 'Aquatic Chemistry for engineers' can be found on the TU Delft OpenCourseWare website for this course: <u>http://drinkwater.citg.tudelft.nl/AquaticChemistry</u>.

Further information on PHREEQC can be found in the following sources: Websites:

- USGS PHREEQC: (<u>http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/</u>) This website also includes FAQs, edited by David Parkhurst.
 - Tony Appelo: (<u>http://www.hydrochemistry.eu/</u>)

Books:

- User's Guide to PHREEQC (Version 3) (Parkhurst & Appelo, 2013)
 Available as 'PHREEQC version 3 Documentation (4.2 M)' at the PHREEQC website
 Available as Help file in PhreeqcI (phreeqci.chm)
- User's Guide to PHREEQC (Version 2) (Parkhurst & Appelo, 1999)
 Available as 'PHREEQC version 2 Documentation (2.3 M)' at the PHREEQC website
 Still relevant for Version 3: pages 9-63
- Hydrogeochemical modeling with PHREEQC (Appelo & Parkhurst, 2011) Available as updated Help file at website of Tony Appelo (phreeqc.chm)

- Groundwater Geochemistry (Merkel, Planer-Friedrich & Nordstrom, 2005)

- Geochemistry, Groundwater and Pollution, 2^e ed (Appelo & Postma, 2005) Papers (peer reviewed):
- Assessment of calculation methods for calcium carbonate saturation in drinking water for DIN 38404-10 compliance (de Moel et al., 2013) Drinking Water Eng. Science, 6, 115-124, 2013 (doi:10.5194/dwes-6-115-2013) (http://www.drink-water-eng-sci.net/6/115/2013/)

Courses:

USGS course Geochemistry for Groundwater Systems 2011 Presentations, examples, exercises and literature of a 5-days course (USGS website)

Tony Appelo uses an adapted version of Notepad++ for writing, editing and running PHREEQC3 input files. This Notepad+ version is available as free download at his website. The book Geochemistry, Groundwater and Pollution, 2^e ed (Appelo & Postma, 2005) uses the obsolete PHREEQC version 'PHREEQC for Windows' (Vincent Post 2010: <u>http://pfw.antipodes.nl/</u>).

Additional information on Iphreeqc (COM modules) can be found in the documentation supplied with the Iphreeqc download:

- Modules Based on the Geochemical Model PHREEQC for Use in Scripting and Programming Languages (Charlton & Parkhurst, 2011)
- IPhreeqcCOM reference (supplied as Help file IPhreeqcCOM.chm).

Annex 4 PHREEQXCEL

PHREEQXCEL has been developed as a container application or 'Graphical User Interface' for PHREEQC for all types of chemical simulations within the online MSc course Aquatic Chemistry for Engineers, given at Delft University of Technology (The Netherlands).

The generic approach allows for all kinds of tailor made simulations and calculations making the power of PHREEQC available to engineers, students, laboratory personnel and many others who lack the programming skills previously required for PHREEQC.

PHREEQXCEL applications are freely available at the website of the course. The public availability of this framework allows for the development of similar applications by experienced PHREEQC users for their own research and using their findings and modelling for all kind of engineering applications.

1. Introduction

PHREEQC has become the 'de facto' standard for geochemical calculations. It has been developed by the US Geological Survey (USGS), starting in 1980 with regular updates and extensions to date. The program is freely available for users, and can be downloaded from the USGS website.

Since April 2011 PHREEQC is also available as a COM-module, which allows running PHREEQC within Windows programs such as Excel and MATLAB (Charlton, S.R. and Parkhurst, D.L., 2011).

This makes the power of PHREEQC available to engineers, students, laboratory personnel and many others who lack the programming skills previously required for PHREEQC.

This article describes the Visual Basis code for Excel (VBA) for using Excel as a one-stop application (PHREEQXCEL) unleashing the powerful chemistry of PHREEQC within the widely known flexible and user friendly environment of Excel with all its powerful graphical and tabular features.

PHREEQXCEL applications can be created by an experienced PHREEQC user and used by all kind of professionals, such as researchers, students, treatment plant operators, laboratory staff etc.

PHREEQXCEL applications can also be used by external Windows applications such as Web servers, allowing for online applications ('in the cloud') without installing PHREEQC at the user-PC. The all-inone setup creates an Excel file containing all relevant data, which can easily be downloaded or emailed to the online user, as an add-on to the summary results shown in the browser itself. PHREEQXCEL applications have been developed for the MSc course Aquatic Chemistry at Delft University of Technology, in both Excel versions as well as online versions.

Since February 2013 PHREEQC version 3 is available, with an updated COM-module. This updated version is used in PHREEQXCEL.

2. Basic setup

The PHREEQC COM-module (IPHREEQC, version 3) can be downloaded from the USGS website and should be installed on a Windows PC. Excel files showing the setup as described in this article can be downloaded from the TU Delft site for the online course Aquatic Chemistry for Engineers.

PHREEQXCEL applications contains at minimum 6 predefined sheets and 4 generic VBA subroutines. The Excel sheet names and VBA subroutines are shown in Table 1.

In PHREEQXCEL all related files are contained in a single Excel file, including the in- and output files, the chemical database file and eventually error messages.

In the minimum setup PHREEQXCEL can run all input code files generated in and for other container systems, such as 'Phreeqc Interactive' (USGS) and 'PHREEQC in adapted Notepad++' (Tony Appelo). A huge number of example files for these containers systems are available, which can be used in PHREEQXCEL:

- USGS: <u>http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/phreeqc3-html/phreeqc3-55.htm</u>
 - Tony Appelo: <u>http://www.hydrochemistry.eu/exmpls/index.html</u>

In a more elaborated setup PHREEQXCEL applications contain one or more user defined input sheets which on one hand provides for a user friendly input sheets and on the other hand a direct relation to the PHREEQC code in the PHREEQXCEL sheet 'Input'. User defined input sheets might also contain results from PHREEQC simulations.

The novice user will only use such user defined front sheet being a tailor made sheet for a specific application, such as calculation of the Electrical Conductivity (EC) or Calcium Carbonate Saturation (SI and CCPP) in drinking water (Standard Methods, 2010).

The output in this sheet might be tabular and/or graphical.

This novice user can fill in the specific data within a self-explaining Excel sheet, start the PHREEQC calculation by clicking the 'Run PHREEQC' button, and overview the results, all within the same front-end sheet.

Experienced PHREEQC users can modify the specific PHREEQXCEL application, or draft a complete new application without modifying the VBA code in PHREEQXCEL

Only 'normal' Excel skills are required to create or modify the application to the specific requirements in a company, department, or project.

Sheet name	Function	IphreeqcCOM method or file
Run_Control	Run settings and Start button	-
Input	PHREEQC input code	[Ex1].pqi
Database	Chemical database for PHREEQC	stimela.dat
phreeqc.out	Lined output (PRINT)	phreeqc.[id].out
Output	Tabulated output (SELECTED_OUTPUT)	selected.[id].out
Messages	PHREEQC warnings and errors	GetWarningString()
		GetErrorString()
VBA subroutines		
RunPhreeqc()	Generic VBA program code for	RunFile()
	PHREEQXCEL applications	RunString()
Button1_Click()	Macro to start RunPhreeqc()	-
Button2_Click()	Macro to select an external Input file	-
Button3_Click()	Macro to select an external Database file	-

Table 1 - Minimum components of PHREEQXCEL applications

3. VBA code and data flow

The heart of PHREEQXCEL is the universal VBA subroutine called RunPhreeqc(), which is called by clicking the 'Run PHREEQC' button. This code can be divided into five steps:

- 1. Initialize application, including COM-object
- 2. Loading database in COM-object (from sheet Database or from external file)
- 3. Running PHREEQC with user input (from sheet Input or from external file)
- 4. Saving output (to sheet Output, sheet Messages and sheet phreeqc.out)
- 5. Returning to a specified front-end sheet.
- The subroutine code also includes Error handling.

The optional items are controlled by settings in the sheet Run_Control, which allows for selecting the chemical database, and user input. These might be read from sheets in the Excel file either or from external files.

The data flow in PHREEQXCEL is shown in Fig. 1. The user input in the front-end sheet (yellow cells) is directly related to the input code in the sheet Input.

After running PHREEQC the (updated) output data in the sheet Output is directly shown in the frontend sheet (non-yellow cells) underneath the 'Run PHREEQC' button. Figure 1. Data flow in PHREEQXCEL applications, with an example application.

The Input sheet contains the full input code for PHREEQC simulations, as in 'normal' .pqi or .phr files. This input sheet is converted into an input string, which can be used in the COM-method Phreeqc.RunString(). The conversion into a string allows for putting part of a PHREEQC statement into separate Excel cells. Such cells can be references to cells on the front-end sheet. The Output sheet is filled by writing the result array from the COM-method

Phreeqc.GetSelectedOutputArray() into the Output sheet. Its tabulated output can be used as references in cells on the front-end sheet.

The content of the tabulated Output sheet is determined by the PHREEQC keywords SELECTED_OUTPUT and USER_PUNCH.

The VBA code is started by its macro-call RunPhreeqc(<Boolean>). With Boolean=TRUE all internal screen messages are ignored allowing for use by external programs without user dialogs. The full VBA code can be seen in PHREEQXCEL applications, as available at the TU Delft Aquatic Chemistry website. All PHREEQXCEL applications have the same VBA code.

4. Details of PHREEQXCEL applications

Details of PHREEQXCEL application will be discussed here for four aspects:

- typical Excel functions
- typical PHREEQC simulations
- dynamic simulations with PHREEQC
- running PHREEQXCEL applications in the Cloud.

Typical Excel functions

PHREEQXCEL applications can be customized by 'normal' Excel routines and formulas. Excel functions should give direct modifications from the front-end sheet into the Input sheet, as well as from the Output sheet into the front-end sheet.

The main object is to 'translate' the user input on the front-end sheet into proper PHREEQC code on the Input sheet. This requires some typical conversions to change numeric data types into proper strings, with points as decimal separator and without thousands separators.

The Excel function FIXED(<number>;3;TRUE) gives text showing the number with 3 decimals with no_commas. The Excel function SUBSTITUTE(<number-text>;",";".") changes all decimal commas into points, in case the international setting of the user creates decimal commas. Combining these 2 functions gives a generic number conversion into proper PHREEQC code.

Using the # symbol, the comment indicator in PHREEQC code, as initial line cell allows for conditional statements in the code.

The PHREEQC output in the Output sheet can often be shown directly into the front-end sheet. For showing results in mmol/kgw instead of the mol/kgw (as PHREEQC default) requires a <result>*1000 formula. Similar unit conversions can be made in Excel into operating units such as mg/L, mS/m etc.

SI values of gases can be converted into partial pressure in Excel with the formula $p_a=10^{SI}$.

Typical PHREEQC simulations

Some water quality parameters require two PHREEQC simulations, as the difference in results gives the requested parameter. Typical examples are Calcium Carbonate Precipitation Potential (CCPP) and Buffer capacity.

Calcium Carbonate Precipitation Potential can be calculated from the difference in Calcium concentration in a simulation with EQUILIBRIUM_PHASES; Calcite, or by the amount of reacted calcite (EQUI_DELTA) divided by the mass of water either volume of the solution. Buffer capacity can be calculated using REACTION for adding a very small amount of HCl (0.01 mmol/kgw) and by subtracting the pH before and after.

Some water quality parameters are not directly calculated by PHREEQC but require additional formulas or functions (CALCULATE_VALUES) to get their values. Typical examples are total Cation and Anion concentration, which can be calculated from Charge Balance difference (CHARGE_BALANCE=Cation-Anion) and Percentage error (PERCENT_ERROR=(Cation-Anion)/(Cation+Anion)).

Kinetic and transport simulations in PHREEQC often give a huge amount of data in the Output sheet. In this case the presentation in the front-end sheet is preferably given as a graph, either directly from the output sheet or via an intermediate transformation calculation in Excel.

Dynamic simulations with PHREEQC

The VBA code in RunPhreeqc includes a one-time-run of PHREEQC, in which the full output array is written into the Excel file, only after ending the full code in the input sheet.

Multiple runs are required if calculation results are required for sequential runs. Solutions with input concentrations in mg/L require the density of the solution as input value. This density can be calculated by PHREEQC, and used in a re-run of the calculation. Such double-runs can be achieved by calling twice the VBA function/procedure RunPhreeq in StartCalc_Click(). This approach is applicable for simulations which require a known number of runs.

More dynamic simulations can be made by using the PHREEQC option INCLUDE\$ in the input file/code. This option allows for writing input code `on the run', which can be used in trailing simulations, based on the results of previous simulations.

Running PHREEQXCEL applications in the Cloud

Modern web server can use other applications for external processes. This makes PHREEQXCEL applications available for web applications without installation of PHREEQC, the IPREEQC-COM module or even Excel on the electronic device of the user.

Data in a web application can be put on the web server into a PHREEQXCEL application, the VBA macro RunPhreeqc(true) can be called and the (summary of) results from the Excel file can be

shown in the browser. Eventually the whole Excel file including all data can be forwarded to the client, as download and/or email attachment.

For experienced web designers this is a 'standard procedure' which is not described here in more detail.

5. Example: Calcium carbonate saturation in drinking water

Calcium carbonate saturation in drinking water is presented here as an example of a practical application of PHREEQXCEL. This application is shown in Fig. 1 (right) and attached to this paper as Supplementary Material. The application deals with the calcium carbonate saturation according to the German standard DIN 38404-10 (2012). The purpose of this standard is to calculate the Saturation Index for calcite (SI) and the Calcium Carbonate Precipitation Potential (CCPP) or its counterpart Calcitlösekapazität (D_c).

The user can fill in the yellow data fields in the front-end sheet and click on the Run PHREEQC button below the input fields to start the PHREEQC calculation. The main results are also presented on the front-end sheet, as 'refreshed values'.

Input parameters

DIN 38404-10 (2012) requires the validation of computer programs on 10 water samples, with given water temperature, pH, and the concentrations of Calcium, Magnesium, Sodium, Potassium, Inorganic carbon, Chloride, Nitrate, Sulphate and Phosphate. Inorganic carbon is used in this example instead of Alkalinity.

In order to use these samples in PHREEQC the Oxygen content (as pO2) and Density (in kg/L) are added.

Moreover the validation values for SI and CCPP are included.

Simulations

The input parameters are transferred to the PHREEQC input code in the Excel sheet Input, under SOLUTION_SPREAD, in which the 10 'initial solutions' are calculated.

After these 'Initial calculations' all samples are recalculated by dummy calculations for electron balancing (to redox equilibrium including calculation of pE).

In these 10 simulations the Saturation Index (SI) SI of all samples is determined (as SI for Calcite). SI is a standard output parameter of each simulation in PHREEQC.

For CCPP additional simulations are required including EQUILIBRIUM_PHASES to Calcite.

Post processing

The calculation results are presented on the front-end sheet, showing the differences between calculated values and validation values.

The example application shows several additional post-processing calculations.

6. Conclusions

PHREEQXCEL makes the power of PHREEQC available to engineers, students, laboratory personnel and many others who lack the programming skills previously required for PHREEQC. PHREEQXCEL applications can be created by an experienced PHREEQC user and used by all kind of professionals, such as researchers, students, treatment plant operators, laboratory staff etc. PHREEQXCEL applications unleash the powerful chemistry of PHREEQC within the widely known flexible and user friendly environment of Excel with all its powerful graphical and tabular features. PHREEQXCEL applications can be used on a Windows PC with Excel and installed IPHREEQC-COM module, but also on all electronic devices as laptops, tablet PCs, iPads, smart phones, etc. as online applications in a web browser ('in the cloud').

References

Charlton, S.R. and Parkhurst, D.L.: Modules based on the geochemical model PHREEQC for use in scripting and programming languages, Computers & Geosciences, 37, 1653–1663, 2011.

De Moel, P.J., Van der Helm, A.W.C., Van Rijn, M., Van Dijk, J.C. and Van der Meer, W.G.J.: Assessment of calculation methods for calcium carbonate saturation in drinking water for DIN 38404-10 compliance, Drinking Water Eng. Science, 6, 115-124, 2013 (doi:10.5194/dwes-6-115-2013), available at http://www.drink-water-eng-sci.net/6/115/2013/.

DIN 38404-10: German standard methods for the examination of water, waste water and sludge - Physical and physico-chemical parameters (group C) - Part 10: Calculation of the calcit saturation of water (C 10), DIN Deutsches Institut für Normung, 2012.

PHREEQXCEL application: AquaticChemistry_CalciumCarbonateSaturation_v20130617.xlsm

Standard Methods 1030E: Checking Analyses' Correctness, in: Standard Methods for the Examination of Water and Wastewater, 22nd Edition, APHA/AWWA/WEF, 2012, SM1030E: 2011.

Standard Methods 2330: Calcium carbonate saturation, in: Standard Methods for the Examination of Water and Wastewater, 22nd Edition, APHA/AWWA/WEF, 2012, SM2330: 2010.

TU Delft: Aquatic Chemistry for Engineers (Online MSc-PhD course in Watermanagement), available at: <u>http://drinkwater.citg.tudelft.nl/AquaticChemistry</u>.

USGS: http://wwwbrr.cr.usgs.gov/projects/GWC coupled/phreeqc/.

Generic VBA code in PHREEQXCEL

Sub RunPhreeqc(Optional Server As Boolean)

- ' Call examples: RunPhreegc or RunPhreegc False or Call RunPhreegc() or Call RunPhreegc(False)
- 'No user messages if Server = True (default = False)

' Requirements (installed items):

' - PHREEQC COM-module (version 3, latest download from USGS website)

' - MS Forms library (part of Windows OS)

- ' MS-Windows clipboard is used for fast copy/paste actions
- ' This requires (MSForms.)DataObject from the MS Forms Library

' For loading this library: include Forms in the VBA project,

' and select MS Forms library in References under menu option Tools

' included Form might be removed afterwards

' Initialize application, including COM-object Dim starttime, endtime As Single starttime = Timer

On Error Resume Next	' ChDrive gives error running on a UNC-system (i.e. Citrix)
ChDrive Left(ActiveWorkbook.Path, 1)	' set drive of Excel file as default drive
ChDir ActiveWorkbook.Path	' set path of Excel file as default directory
On Error GoTo ErrHandler:	' set Error handler

Set phreeqc = CreateObject("IPhreeqcCOM.Object") phreeqc.OutputStringOn = True ' default = False phreeqc.OutputFileOn = False ' default value phreeqc.SelectedOutputFileOn = False ' default value phreeqc.CurrentSelectedOutputUserNumber = 1 ' default = 1

Worksheets("Messages").Activate

ActiveSheet.Cells.ClearContents 'clear (old) Messages InputSheet = Worksheets("Run_Control").Range("InputSheet").Value DatabaseSheet = Worksheets("Run_Control").Range("DatabaseSheet").Value ReturnSheet = Worksheets("Run_Control").Range("ReturnSheet").Value 'User messages only in non-server mode If Not Server And Not Worksheets("Run_Control").Range("Messages").Value Then Server = True End If

' Define input file and database file (might be empty)

File In = Worksheets("Run Control").Range("InputFile").Value

'Iphreeac generates an error if File In can not be read

DatabaseFile = Worksheets("Run Control").Range("DatabaseFile").Value

- ' Iphreeqc generates an error if DatabaseFile can not be read
- 'Include full path name if not in default directory (= location of Excel file)

If DatabaseFile <> "" Then 'use DatabaseFile if filled phreeqc.LoadDatabase (DatabaseFile) 'method loads database (returns number of errors) ' database dump to sheet Database (with switch True/False for users preference) If True Then 'allways fast version ' Import database file in Excel-sheet (fast version, requires MS Forms Library) ' Fast copy/paste from database file via Clipboard (with TAB = next column, new rows etc)

Worksheets(DatabaseSheet).Activate

- ActiveSheet.Cells.ClearContents
- Open DatabaseFile For Input As #2
- Dim MyData2 As MSForms.DataObject 'from MS Forms Library
- Set MyData2 = New MSForms.DataObject

MyData2.SetText Input(LOF(2), #2)

^{&#}x27; Load database in COM-object

MyData2.PutInClipboard Close #2 ActiveSheet.Paste Destination:=Worksheets(DatabaseSheet).Range("A1") End If Else 'use DatabaseSheet ' From sheet Database into string for COM-module ' Copy content sheet Database to Clipboard Sheets(DatabaseSheet).Select Cells.Select Selection.Copy Copy Clipboard to String Dim IstringDB As String Dim MyData1 As MSForms.DataObject 'from MS Forms Library Set MyData1 = New MSForms.DataObject MyData1.GetFromClipboard IstringDB = MyData1.GetText 'or GetText(1) ' use string in COM-module phreegc.LoadDatabaseString (IstringDB) 'method loads database (returns number of errors) End If ' Iphreegc generates an error if Database is not loaded in COM-object ' Iphreeqc generates an error if file Db cannot be opened or read (as proper PHREEQC database) ' Iphreeqc ignores the database file specified with DATABASE in the input file (.pgi) ' This is also shown in the warning in phreegc.out: DATABASE <filename> WARNING: DATABASE keyword is ignored by IPhreegc. ' Run PHREEQC with user input If File In <> "" Then 'use File In if filled phreegc.RunFile (File In) 'method runs PHREEQC (returns number of errors) ' input file dump to sheet Input (with switch True/False for users preference) If True Then 'allways fast version 'Import input file in Excel-sheet (fast version, requires MS Forms Library) ' Fast copy/paste from database file via Clipboard (with TAB = next column, new rows etc) Worksheets(InputSheet).Activate ActiveSheet.Cells.ClearContents Open File In For Input As #3 Dim MvData3 As MSForms.DataObject 'from MS Forms Library Set MyData3 = New MSForms.DataObject MyData3.SetText Input(LOF(3), #3) MyData3.PutInClipboard Close #3 ActiveSheet.Paste Destination:=Worksheets(InputSheet).Range("A1") Fnd If Else 'use InputSheet as String Dim Istring As String ' Content from from InputSheet into Clipboard Worksheets(InputSheet).Activate Cells.Select Selection.Copy ' Copy Clipboard to String Dim MyData4 As MSForms.DataObject 'from MS Forms Library Set MvData4 = New MSForms.DataObject MyData4.GetFromClipboard Istring = MyData4.GetText 'or GetText(1) phreeac.RunString (Istring) 'method runs PHREEOC (returns number of errors) Fnd If

' Save output string in phreeqc.out sheet (fast version, requires MS Forms Library) ' Fast copy/paste from outputstring via Clipboard (with TAB = next column, new rows etc) Worksheets("phreeqc.out").Activate

ActiveSheet.Cells.ClearContents Dim MvData As MSForms.DataObject 'from MS Forms library Set MyData = New MSForms.DataObject MyData.SetText phreeqc.GetOutputString() MyData.PutInClipboard ActiveSheet.Paste Destination:=Worksheets("phreegc.out").Range("A1") ' Save Selected Output data to output sheets Output, Output2, Output 3 etc. Dim num, nums nums = phreegc.GetNthSelectedOutputUserNumberList() For Each num In nums phreeqc.CurrentSelectedOutputUserNumber = num If num = "1" Then num = "" 'Name OutputSheet is Output (n=1) else Output<n> OutputSheet = "Output" & num Worksheets(OutputSheet).Activate ActiveSheet.Cells.ClearContents ' check for empty output array to avoid Excel error in Range copy If phreegc.GetSelectedOutputValue(0, 0) <> "" Then arr = phreeqc.GetSelectedOutputArray()Range(Cells(1, 1), Cells(phreeqc.RowCount, phreeqc.ColumnCount)) = arr End If Next ' Messages If Server = False Then 'no messageboxes in server endtime = Timer MsgBox ("Phreeqc ran successfully." + Chr(13) + "IPreeqcCOM " + phreeqc.Version + Chr(13) + "End of Run after " + Format((endtime - starttime), "#,##0.00 "" Seconds.""")) End If If phreeqc.GetWarningString() <> "" Then Worksheets("Messages").Activate Cells(1, 1) = "Phreega errors: " & phreega.GetWarningString()If Server = False Then 'no messageboxes in server MsgBox phreegc.GetWarningString() 'PHREEQC warnings (from COM-object) Fnd If End If ' Show Excel return sheet On Error Resume Next ' Prevents VBA-error if ReturnSheet does not exist Worksheets(ReturnSheet).Activate Exit Sub FrrHandler: If Server = False Then 'no messageboxes in server If phreeac.GetErrorString() = "" Then MsqBox ("Iphreegc error:" + Chr\$(13) + "Excel-VBA error") Flse MsgBox ("Phreeqc errors: " + Chr\$(13) + phreeqc.GetErrorString()) End If End If Worksheets("Messages").Activate If phreeqc.GetErrorString() = "" Then Cells(3, 1) = "Iphreeqc error:" + Chr\$(13) + "Excel-VBA error" Else Cells(3, 1) = "Phreegc errors: " + Chr\$(13) + phreegc.GetErrorString() End If End Sub

LABS AND TESTS

Using PHREEQC in PHREEQXCEL Lab 2.1 Running PHREEQC in PHREEQXCEL Running PHREEQXCEL apps Lab 2.2

Drinking water in PHREEQC

Lab 3.1	PHREEQXCEL for Pure water	with Test
Lab 3.2	PHREEQC input for SOLUTION	with Test
Lab 3.3	PHREEQXCEL input for SOLUTION	with Test
Lab 3.4	PHREEQXCEL input for SOLUTION_SPREAD	with Test
Lab 3.5	PHREEQC output for SOLUTION	with Tests

Controlling output

Lab 4.1	User controlled output	with Test
Lab 4.2	Tabulated output from PHREEQC	with Test
Lab 4.3	Multiple output streams from PHREEQC	with Test
Lab 4.4	User defined functions in PHREEQC	with Test
Lab 4.5	Output processing in Excel	with Test
Lab 4.6	User graphs in PHREEQXCEL	with Test

Water treatment

Lab 5.1	Concentrations, density and charge balance	with Test
Lab 5.2	Electrical Conductivity and Total Dissolved Solids	with Test
Lab 5.3	Mixing water	
Lab 5.4	Dosing of chemicals with REACTION	with Test
Lab 5.5	Dosing of chemicals with MIX	with Test
Lab 5.6	Reaction with solids in EQUILIBRIUM_PHASES	
Lab 5.7	Gas transfer with GAS_PHASE	

Groundwater and redox reactions

Lab 6.1	Groundwater in PHREEQC	with Test
Lab 6.2	Groundwater well fields	
Lab 6.3	Groundwater treatment with aeration and filtration	

Answer sheets for Labs

Sheets for students

Sheets with correct answers
Lab 2.1 Running PHREEQC in PHREEQXCEL

Open AC4E_Lab_2_1.xlsm.

Enable Macros, if requested.

Look to the content of each sheet, and notice that all sheets are empty, except for sheet Database, which includes stimela.dat, the default database for water treatment in PHREEQC. Click on 'Run PHREEQC' to start the PHREEQC calculation:

After completion of the Run, the user is informed by an Excel message, since the Messages check box on Run_Control is set on TRUE.

The Return-sheet phreeqc.out is shown, containing the PHREEQC PRINT results. The 'empty' content of the sheet Input code results in only 'Reading input data for simulation 1' followed by 'End of Run after x Seconds.' :

×I 🔒	5 ° ¢	~ .					AC4E_Lab	_2_1.xls	m - Exce	:1					?	* -		×
FILE	HOME	INSERT	PAGE LA	YOUT FC	RMULAS	DATA	A REV	IEW	VIEW	0	DEVELOPER	TEAM					Sign in	Μ
K10	•	\times v	f _x															۷
A	E	С	D	E	F		G	Н		1	J	K	L	М	1	I	0	
1 2 Read: 3 4 5 6 End o 7 8	ing inpu of Run a	t data fo	or simula	ation 1.														
9			1							~							_	-
•	R	un_Control	Input	Database	phree	qc.out	Outpu	ut M	√€	(+)	•							·]
READY	4											⊞			-		+ 1009	%

Go to sheet Run_Control.

Set Messages to FALSE, and Run PHREEQC again.

Notice that Run takes less running time since the IphreeqcCOM object was already loaded. The End of Run gives the time after the first start of this COM object.

Go to sheet Run_Control.

Set Return sheet to 'Run_Control', and Run PHREEQC again.

Notice that actual Run is hardly notice by lacking the Excel Message box of completion of the Run.

USGS: Example 7

Ref: <u>http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/phreeqc3-html/phreeqc3-62.htm</u> Set Return sheet to 'phreeqc.out'.

Select an Input file by clicking the button 'Select Input File'. Select 'ex7.pqi'.

Run PHREEQC:

Notice the two user graphs, and close both graphs.

Observe the content of sheets phreeqc.out (=ex7.pqo), Output (=ex7.sel), Messages (=phreeqc.log and Warnings in ex7.pqo) and Input (=ex7.pqi).

Select the sheet Run_Control, and empty the cell D7 (=InputFile). Run PHREEQC.

The result is equal to previous run since the content of file ex7.pqi is stored in the sheet Input. Close both graphs.

USGS: Example 20a

Ref: <u>http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc3-html/phreeqc3-75.htm</u>

Select sheet Run_Control.

Type in Input code / External file: ex20a.pqi (assuming this file is located in the map of the .xlsm file), or select this file via button 'Select Input File'.

Set Messages to FALSE.

Run PHREEQC:

Microsoft Excel
Phreeqc errors: ERROR: Phase not found in database, CaCO2[180](s), assemblage 1. ERROR: Phase not found in database, CaCO[180]2(s), assemblage 1. ERROR: Phase not found in database, Ca[13C]03(s), assemblage 1. ERROR: Phase not found in database, Ca[13C]02[180](s), assemblage 1. ERROR: Phase not found in database, Ca[13C]01[80]2(s), assemblage 1. ERROR: Two components were not defined for Calcite solid solution ERROR: Calculations terminating due to input errors.

Click OK to continue.

Select sheet Run_Control.

Type in Database / External file: iso.dat (assuming this file is located in the map of the .xlsm file), or select this file via button 'Select Database File'.

Run PHREEQC.

Click OK in the succeeding Message boxes:

IphreeqcCOM uses the database set in the sheet Run_Control , instead of the file defined by the Keyword DATABASE in the input code.

Observe the content of sheets Database (=iso.dat), phreeqc.out (=ex20a.pqo), Output (=empty), Messages (=phreeqc.log and Warnings in ex20a.pqo) and Input (=ex20a.pqi).

This examples demonstrates that PHREEQC input code in written for a specific database, as defined by the keyword DATABASE. PHREEQC databases are not freely interchangeable they differs in (names and number of) elements, species, phases etc.

The content of sheet Database is overwritten by the content of iso.dat. This behaviour could be avoided by creating a new sheet in Excel, with the name Database2 (or iso.dat), and defining on Run_Control the sheet Database as Database2 (or iso.dat). Multiple databases in a PHREEQXCEL file might be considered in case the input code properly functions with the databases included. This scenario is beneficial for comparing results of different databases.

(Suggestion: repeat this example by adding and using an additional Excel sheet for iso.dat)

To restore the original content of the sheet Database:

- select sheet Run_Control
- empty the content on cell D7 (=InputFile)
- fill cell D11 (=DatabaseFile) with 'stimela.dat'
- empty the content of sheet Input
- Run Phreeqc,
- click OK
- empty the cell D11 (=DatabaseFile).

Appelo: Example 5.5

Ref: <u>http://www.hydrochemistry.eu/exmpls/calcite.html</u> <i>Ref: <u>http://www.hydrochemistry.eu/a&p/5/ex_5_5.phr</u>

Select sheet Run_Control.

Type in Input code / External file: ex_5_5.phr (assuming this file is located in the map of the .xlsm file), or select this file via button 'Select Input File'.

Set Return sheet to phreeqc.out.

Set Messages to FALSE.

Run PHREEQC:

Observe the content of sheets Input (=ex_5_5.phr), phreeqc.out (=ex_5_5.out), Output (=empty), Messages (=empty).

Select sheet Run_Control. Empty the content on cell D7 (=InputFile). Run PHREEQC. The same result is obtained as the input code in already in sheet Input, and no other external Input file has been specified. Close window User Graph.

Select and empty the content of sheet Input Select sheet Run_Control. Set Return sheet on phreeqc.out. Set Messages to TRUE. Run PHREEQC.

The initial result of this Lab is obtained.

Note 1:

The present version of 'AC4E-phreeqxcel.xlsm' does not allow for the use of selected output for the creation of input code for #INCLUDE.

This functionality might be obtained by multiple running of the IPhreeqcCOM-object, or by using the AccumulateLine Method of IPhreeqcCOM, or by using different selected output files with the CurrentSelectedOutputUserNumber Property of IPhreeqcCOM.

Note 2:

Appelo uses a modified version of the database phreeqc.dat, in which ammonium (NH_4^+) is defined as redox-uncoupled or inert AmmH⁺ ('element' Amm = NH_3) and the element N(-3) is absent. USGS calls this database amm.dat.

PHREEQXCEL uses stimela.dat as default database, which includes both definitions and therefore allows for using input files from both sources.

Lab 2.2 Running PHREEQXCEL apps

Open AC4E_Lab_2_2.xlsm. Enable Macros, if requested.

Select sheet 'Dashboard'.

This sheet shows a process scheme for a surface water treatment plant for drinking water produced from river water after passing an equalizing reservoir with a detention time of some 60 days. The model calculates the water quality (macro-parameters) after each process step in the treatment plant for the last 14 days (average day-values).

Treatment process

The 'Dashboard' sheet shows the treatment process scheme, with the chemical dosing points and the laboratory sample points. Below the process scheme the water quality at each sample point is shown (31 parameters). The value for pH is shown graphically, with calculated values, measured values (day-average values from inline measurements) as well as the acceptable operational range (min-max values).

At start-up the values for the last of the 14-day time span is shown.

Click on the first (upper) day, at the left site of the process scheme. This initiates the model calculation for the selected day, after which the data on this sheet is updated.

The process parameters used in this model are presented on sheet 'Proces'. Select this sheet and overview the data and set-up. This example model uses simple removal efficiencies based on historical performance of the plant.

The model data is used in the PHREEQC program code on sheet 'Input'.

SOLUTIK # #	DN_SPREAD -units -redox -water Oxg Ntg -pe	mg() 10(22)00(0) 1 10(g(g) - 0.024 4	# if 02=0 then "pe" dec "0(-2)/0(0)" # by which # defaulty heigh (200) 0,049 # default # default # default		
number	temp pH	O(0) Turb Uvab Si Doc Ca Mg Na arO arSi arC arCa arMg arNa	K AI Fo Mn (N+3) Alkolinity CI N(+5) (N+3) S(6) F P acK yg/lac AI ac Fo ac Mn ac N ac HCC3 ac CI ac N ac N ac SO4 ac F yg/lac P	density Oxg Ntg	Description
END	(10)-500 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -			Loope Toxaldi Ting(g) cloc4	# Simulation 1
TITLE	Calculation pe	and pH at field temperature	F1. (C00)	SAVE colution 1 - END	# Simulation 2
TITLE	Calculation CC USE solution	PP 1 ;EQUILIBRIUM_PHASES 2 ;Calcito		END :END	# Simulation 3
# Wate	er treatment				
TITLE	Dosing HCI USE solution	1 ; REACTION 1 ; HCI 1.0 ; 0;137(144; mmoles		; SAVE solution 2 ; END	#Simulation 4 after HCI
TITLE	Coagulation USE solution	Dosing and removal Sachtoklar Adding: AICI1.33(\$04)0.145(0H)1.33 2 ; REACTION 1 ; AICI1.33(\$04)0.145(0H)1.38 1.0;	Removal: xX dosing ; Al(OH)3 <mark>-0.95000</mark> ; 15.2444)4 mmoles	; SAVE solution 3 ; END	#Simulation 5 after dosing + se
TITLE	Coagulation USE solution	Removal raw water compounds Al (x2 Row) Fe(x2 Row) A 3 : REACTION 1 : Al(OH)3 -0.00538 : Fe(OH)3 -0.00538 : MnO3	(x% Raw) Doc (x% Raw) etc <mark>-0.00028</mark> ; ;Turb :X\$\$\$7400 ; Doc <mark>-0.46207</mark> ; Uvab :X174000 ; PD4 <mark>-0.00038</mark> ; 1.0 mmoles	; SAVE solution 3 ; END	#Simulation 6 after Sedimentat
TITLE	USE solution	3 : GAS_PHASE 1: fixed_pressure : pressure 1.00 : volume 400000 Acration at outflow Acration: increase organize decrease of	; - temperature 55;	; END	# Simulation 7 air composition
	USE solution	3 ; GAS_PHASE 1; -fixed_pressure ; -pressure 1.00 ; -volume 2;6000	; -temperature 55;; : 02(g) 0.20602; : Ntg(g) 0.752087; : C02(g) 0.002727; : H2O(g) 0.003853	; SAVE solution 3 ; END	Simulation 8 after Sedimentat
TITLE	Dosing O2 + H3 USE solution	PO4 removal H3PD4 not included 3 ; REACTION 1 ; O2 10.000000 ; H3PD4 10.0000000	;1.0 mmoles	; SAVE solution 4 ; END	#Simulation 3 after dosings
TITLE	Rapid filtration	Removal Al-Sachtoklar and raw water compounds Al (22) 4 : REACTION 1 : Al(OH)3 - 0 011754 : Fa(OH)3 - 12001567 : MaG	wey% Sacht.) Fe[x% Row) Ma[x% Row) Doc (x% Row) etc →0.000005 :Turb →0.266750 :Doc →0.006651 :Uvab →0.45000 :PO4 →0.0000511 :10 mmolec	: SAVE solution 5 : END	■ Simulation 10 after Filtration (r
TITLE	Rapid filtration USE solution	Conversion NH4 Convertinent NH4 in redex-f 5 ; REACTION 1 ; [N-3]H4 -1.0 ; NH4 1.0 ;	14 = N(-3) for starting oxydation reactions 11.002872 mmoles	; SAVE solution 5 ; END	# Simulation 11 after Filtration (F
TITLE	Rapid filtration	Convertion DOC Convert Inert Doc with 02 in 5 ; REACTION 1 ; Doc -1.0; O2 -1.0; CO2	002 1.0 ; <mark>10,0000001</mark> mmoles	; SAVE solution 5 ; END	# Simulation 12 after Filtration (D
TITLE	AC filtration USE solution	Removal Al-Sachtoklar and raw water compounds Al (28) 5 : REACTION 1: Al(OH)3 -000025 : Fe(OH)3 -000008 : MaG	w+v% Sacht.) Fe(x% Raw) Me(x% Raw) Doc (x% Raw) etc •0000000 :Twb -0000555 :Coc •0004952 :Uvab -1350000 :PD4 •0000007 :10 mmoles	:SAVE solution 6 :END	# Simulation 13 after Activated 0
TITLE	AC filtration USE solution	Conversion DOC Conversion DOC Conversion DOC 6 ; REACTION 1; Doc -1.0; O2 -1.0; CO2	CO2 1.0 ; 0.00000 mmoles	;SAVE solution 6 ;END	■ Simulation 14 after Activated 0
=	U¥				
TITLE	SS filtration USE solution	Removal Al-Sachtoklar and raw water compounds Al (22) 6 ; REACTION 1; Al(0H)3 -0.00037 ; Fe(0H)3 -0.00003 ; Ma02	w+v% Sacht.) Fe(x% Raw) Me(x% Raw) Doc (x% Raw) etc -0.00000 (Turb 30.00388 (Doc -0.00832 (Uvab 31.359000 (PO4 -0.000007 (10	; SAVE solution 7 ; END	# Simulation 15 after Slow sand (
TITLE	SS filtration USE solution	Conversion DOC Convertinent Doc with 02 in 7 Convert inert Doc with 02 in 7 7 ; REACTION 1; Doc -1.0; 02 -1.0; C02	002 10; 10,00000 mmoles	; SAVE solution 7 ; END	# Simulation 16 after Slow sand (
TITLE	Aeration USE colution	Composition air in cascade compartments		- END	# Simulation 17 air composition .
TITLE	Aeration USE polution	Aeration in step 1 Aeration: increase oxygen, decrease cs 7 ; GAS_PHASE 1: -fixed_propping : -propping 1.00 : -volume 0.0000	on dioxide, increase/decrease aitrogen : -temperature 25 :: 02(a) 0.205175 : Nta(a) 0.762025 : CO2(a) 0.003045 : H2O(a) 0.005154	:SAVE solution 8 :END	Simulation
TITLE	Acration USE solution	Aeration in step 2 Aeration: increase oxygen, decrease or 8 ;GAS_PHASE 1; -fixed_pressure ; -pressure 1.00 ; -volume 0:2000	oon dioxido, increase/decrease nitrogen ; -temperature 8.5	;SAVE solution 8 ;END	# Simulation 19 after cascade sto
TITLE	Acration USE solution	Acration in step 3 Acration: increase oxygen, decrease or 8 ; GAS_PHASE 1; -fixed_pressure ; -pressure 1.00 ; -volume [0.40]	oon dioxido, increase/decrease nitrogen ; -temperature	; SAVE solution 8 ; END	#Simulation 20 after cascade sto
TITLE	Dosing NaOH USE solution	Required dose for SI=0 8 :EQUILIBRIUM_PHASES 2 :Calcity 0.00001 Na0H (21	:SAVE solution 3 :END	■Simulation 21 after NaOH dosin
TITLE	Calculation CC USE solution	9 ; EQUILIBRIUM_PHASES 2 ; Calcito		; END	# Simulation 22 CCPP after NaO

The orange cells in the program code show the raw water quality (effluent equalization reservoir) obtained from the sheet 'Mengbekken'. The yellow cells show the process parameters from the sheet 'Proces'.

The treatment process is modelled in 22 calculation steps ('Simulations' in PHREEQC nomenclature).

Select sheet 'Mengbekken'. Overview how the most recent water quality measurements for 9 parameters are completed and compared with historical data for 25 parameters. Previous model validations has shown that this combination of actual and historical data is adequate for the required accuracy of the model.

Wateri op bas . Histo . Actue . Uitga	rwaliteit Mer is van: rische data: ile data: gem ngspunt: Ac	ngbekken v gevalideere eten waard tuale data '	oor modelb le weekanaly len bepaald 'overschrijft	erekening 19es voor se voor de act " historisch	hatting nie Jele week e data	t gemeten p	oarameters																					
Datum	simulatie		19-3-201	5	Weeknr	12	donderd	ag																				
Actueo Histori	1 12			5,5 7,9	7,82 7,80	19,5 21,4	7,97 7,94	11,8 10.6	29,0 29,4	3.2	47	6.3	11.8	37 39	4.4	17	4.7	153	1.88	0.07	0,04	102 112	26	1.93	0.01	17	0.0	48
Model	12			5,5	7,82	19,5	7,97	11,8	29,0	9,2	47	6,3	11,8	37	4,4	17	4,7	153	1,88	0,07	0,04	102	26	1,93	0,01	17	0,0	48
						pHb	niet er uit Simu	laties	controle	optioneel	optioneel							optioneel	optioneel	optioneel	l optioneel					optioneel	optioneel	optioneel
vlooku	P 1	2	3	4 General	5	6	7	8	9	10	11	12	13	14 Cations	15	16	17	18	19	20	21	22 Anions	23	24	25	26	27	28
	Week ID	Soln #		00	pH-lab -	temp-pH OC	pH-ber -	02 mg/L	EGV-20 mS/m	roebelhei FTU	UV-abs /m	Si mg/L	Doc mg/LC	Ca mg/L	Mg mg/L	Na mg/L	K mg/L	Al ug/L	Fe mg/L	Mn mg/L	NH4 mg/LN	HCO3 mg/L	CI mg/L	NO3 mg/LN	NO2 mg/L N	SO4 mg/L	F mg/L	PO4 ug/LP
	1	1		7,1	7,89 7.89	20,1	8,03 8.03	11,8 11,8	23,4 23,4	5,3 5.3	44	5,7 5,7	12,0	40 40	4,9	11	4,3 4,3	146 146	1,03	0,04	0,02	115	23 23	1,24	0,00	16 16	0,1	42
	3	3		6,6	7,87	17,2	7,99	11,6	28,9	6,2	45	5,8	12,0	40	5,0	11	4,7	145	1,20	0,05	0,03	113	23	1,24	0,00	16	0,1	42
	5	5		5,5	7,81	17,9	7,94	11,8	28,8	11,9	49	5,3	12,0	38	5,0	11	4,7	147	1,31	0,04	0,03	109	23	1,24	0,00	16	0,1	50
	6	6		5,0 5,5	7,80 7.85	19,4 19,3	7,95	11,7	28,9 28.6	4,5 4,8	46 46	6,0 6,1	12,0 12.0	33 40	5,0 4.9	11	4,7	141	1,18	0,04	0,04	106 107	23 25	1,24	0,00	16 16	0,1	48
	8	8		6,0	7,86	20,7	8,02	11,5	28,5	6,4	50	6,1	12,0	39	4,9	11	4.7	152	1,32	0,04	0,03	108	25	1,24	0,01	16	0,0	49
	10	10		6,9	7,84	20,5	7,98	11,5	28,8	5,0	50	6,2	12,0	38	4,9	17	4,7	124	1,32	0,03	0,05	103	25	1,93	0,01	16	0,0	48
	11	11		7,4	7,77	21,8	7,92	11,0	23,2	6,3 3,2	49	6,2 6.3	11,9 11.8	37	4,4	17	4,7	135	1,52	0,06	0,04	111	26 26	1,93	0,01	17	0,0	43
	13	13		8,4	7,89	19,9	8,01	11,2	29,5	5,5	45	6,3	11,6	39	4,4	17	4,7	33	1,34	0,04	0,03	113	26	1,93	0,01	17	0,0	45
	15	15		3,6	7,79	20,0	7,89	10,6	23,2	4,0	46	6,0	11,4	39	4,8	17	4,7	77	1,07	0,02	0,02	116	26	1,93	0,01	17	0,0	76
	16 17	16 17		10,7	7,80 7.86	18,1 19,3	7,87	10,6 10.0	23,3 23,3	2,9	43 43	6,2 5.3	11,3 11,1	41 39	4,8	17 17	2,3	67 62	0,93	0,01	0,02	118 119	26 26	1,93	0,01	17	0,1	35 30
	18	18		12,4	7,79	20,5	7,87	9,4	30,1	4,6	41	5,8	11,0	40	4,8	17	2,9	77	1,16	0,06	0,06	121	26	1,93	0,01	17	0,1	41
	20	20		13,3	7,61	20,6	7,87	3,5	29,0	4,3	43	5,4	11,0	42	4,3	17	2,3	30	1,10	0,06	0,07	121	22	1,83	0,01	16	0,1	45
	21	21		15,0 15,9	7,78	20,2	7,83	9,4 9.4	29,2	6,8 4,7	45	5,6	11,0	41	4,9	17 19	2,9	86 63	1,23	0,06	0,03	120	22	1,93	0,00	16 16	0,1	40
	23	23		16,3	7,77	19,9	7,80	8,9	29,0	5,9	46	5,6	10,8	40	5,0	19	2,9	68	1,00	0,05	0,08	121	26	1,26	0,02	16	0,1	35
	24 25	24 25		18,2	7,68	21,6	7,71 7,78	8,1 8,3	23,2	7,9	45 46	5,8 5,6	10,5	40	5,0	19	2,3	80 57	0,95	0,05	0,05	122	26 26	1,26	0,03	16 16	0,1	38
	26	26		18,5	7,78	22,0	7,81	8,3	29,7	4,1	43	5,5	10,0	40	5,0	19	2,9	58	0,93	0,05	0,03	125	26	1,26	0,05	16	0,1	32
	28	28		20,0	7,87	22,4	7,89	8,2	30,2	3,5	39	5,2	10,8	42	5,2	19	2,3	35	0,59	0,05	0,04	132	29	1,26	0,03	15	0,1	18
	29	29 30		20,9	7,98 8,07	21,1 21,9	7,98 8,07	8,7 8,9	30,1 30,4	4,2	37 35	4,3	11,0 10,2	43 42	5,2 5,2	19 19	2,9	35	0,44	0,05	0,05	130 134	29	1,26 1,26	0,02	15 15	0,1	12
	31	31		22,5	8,23	21,7	8,22	9,5	30,3	5,2	33	3,3	10,2	42	5,1	19	2,9	52	0,37	0,05	0,04	135	24	1,26	0,01	13	0,1	13
	33	33		22,4	8,04	21,3	8,03	7,8	30,8	6,1	35	2,4	10,5	44	5,1	19	2,9	79	0,41	0,07	0,09	141	24	1,26	0,03	13	0,1	20
	34 35	34 35		20,2	7,98 7,93	21,7 21,5	7,99 7,96	7,7 8,0	30,7 30,4	5,9 7,8	31 33	2,2	10,1	45 43	5,1 5,2	19 19	2,9	60 78	0,55	80,08 0,09	0,06	141 141	24 25	1,26	0,03	13 13	0,1	38 29
	36	36		18,5	7,93	21,8	7,96	8,0	30,5	5,9	34	3,0	10,0	48	5,2	19	2,9	76	0,57	0,07	0,03	138	25	0,42	0,02	13	0,1	29
	38	38		18,5	7,83	20,9	7,85	7,7	30,6	7,1	33	3,4	9,4	40	5,2	19	2,3	88	0,66	0,01	0,03	141	25	0,42	0,00	13	0,1	34
	39	33		18,7	7,82 7.86	21,8 20.9	7,85	7,8 8.2	31,2 31,2	8,3 6,2	31 30	3,7	9,3 11,9	46 47	5,1	19 19	2,3	81 64	0,77	0,10	0,03	145 147	23 23	0,42	0,00	13 13	0,1	34 32
	41	41		17,1	7,84	20,7	7,87	8,2	31,4	5,2	30	4,3	11,9	47	5,1	19	2,9	64	0,59	0,09	0,04	147	23	0,42	0,00	13	0,1	26
	42	42		15,8	7,86	21,3	7,91	8,3	31,5	6,9	25	5,2	8,9 8,9	46	4,9	19	2,3	83	0,62	0,11	0,05	150	23	0,42	0,00	13	0,1	35
	44	44		14,0	7,90	20,0	7,96	8,8	31,6	4,5	28	5,1	9,2 9,5	47	4,9	19 19	2,9	62 62	0,46	0,08	0,07	154	21	0,42	0,00	13 13	0,1	40
	46	46		11,8	7,89	21,0	7,98	9,1	31,9	4,9	28	5,2	9,8	47	4,9	19	2,9	58	0,46	0,07	0,02	149	21	0,42	0,00	13	0,1	33
	47 48	47		10,9	7,88 7,88	21,4 20,6	7,38	3,2 9,5	31,9 31,7	5,3	27 28	5,3 5,4	10,2	46	4,3	13	2,3	56	0,57	0,07	0,03	149	22	0,42	0,00	13	0,1	45 36
	49	43		8,1	7,90	13,4	8,02	10,0	31,8	3,1	26	5,4	10,8	46	4,9	15	2,9	37	0.43	0,08	0,02	143	22	0,51	0,00	13	0,1	36
	51	51		6,6	7,92	20,0	8,13	10,9	31,1	4,7	33	5,6	11,4	46	5,2	15	2,9	17	0,68	0,06	0,02	138	24	0,51	0,00	13	0,1	34
	52	52		6,9	7,90	20,0	8,10	11,4	30,3	5,0	39	5,7	11,7	46	5,2	15	2,9	111	0,89	0,05	0,02	127	24	0,51	0,00	13	0,1	34

Simulations

In previous description the model calculation for a single day has been given. Simulations for a 14 days period are based on a data export (day-average values) from the process control computer, as presented on sheet 'uit PGIM'. For all 14 days, day-average values for 8 weekly measured water quality parameters from the reservoir, 27 online water quality measurements and 22 online flow measurements (9 for water and 13 for dosed chemicals) are imported.

This data update is programmed in Excel-VBA code, which checks for the most recent data-export file, loads the data and starts the simulation calculations for all 14 days, after start-up of the Excel file.

DOM	mort										Glo.	2015 02 1	01.15.00	120 0	imala DaE	hunt OneZi	ivering bro	und st sul au						
- Canon	rapore	(en m	and down	Canal	140.00						data:	10.0.201E	146.00		illiela_Der	un_oppzo	ivening_bic	nuala.nisa						
penode		NUT	vnjuag	20	140.00						uate:	13-3-2015	1:10:00											
		CIII	vnjuag	20-mit	E16:03																			
Date-tim	e export		20-3-2015	146-05	week/dan	12	5																	
	a angenera																							
	Lab Rese	rvoir							Inline mea:	surements	Reservoir	Waterdebi	eten											Dos
date	t	pH-lab	temp-pH	02	EGV-20	Ca	NH4	HCO3	temp	pH	02	MB-1	MB-2	MB-3	Coag-1	Coaq-2	Coag-eff	UV-1	UV-2	UV-3	LZF-2	LZF-3	LZF-4	LZF-5 H
+ time	degr C	pH	degr C	mg/l	mS/m	mg/l	mgil	mg/l	degr C	1.1	mg/l	m³/h	m?/h	m?/h	m?/h	m'/h	m ⁹ h	m?/h	m?/h	m³/h	m'/h	m?/h	m?/h	m³/h
	WSRV-PG	WSRV-PO	G WSRV-PG	WSRV-PO	G WSRV-PG	WSRV-PG	WSRV-PG	WSRV-PG	WSRV-PG	WSRV-PG	WSRV-PG	i 44SRV-PG	WSRV-PG	WSRV-PG	i WSRV-PG	i 4SRV-PG	WSRV-PG	WSRV-PG	WSRV-PG	WSRV-P0	a 46RV-PG	WSRV-PG	WSRV-PG	i WSRV-PG PDI
06-03	4,30	7,81	20,60	11,62	29,00	37,18	0,04	108,27	5,95	7,72	11,77	0,14	0,20	772,09	387,07	373,35	758,99	370,14	381,19	0,00	187,81	187,29	187,77	188,46
07-03	4,30	7,81	20,60	11,62	29,00	37,18	0,04	108,27	5,94	7,73	11,87	0,14	0,20	772,54	386,33	374,49	759,46	370,88	380,93	0,00	187,89	187,53	187,91	188,53
08-03	4,30	7,81	20,60	11,62	29,00	37,18	0,04	108,27	6,12	7,74	11,84	0,14	0,20	772,45	388,38	372,55	759,45	370,84	380,93	0,00	188,18	188,04	188,36	187,29
09-03	4,30	7,81	20,60	11,62	29,00	37,18	0,04	108,27	6,38	7,70	11,71	486,06	0,20	288,62	387,83	372,51	759,00	370,67	380,46	0,00	188,26	187,88	188,50	187,01
10-03	5,30	7,79	20,70	11,57	28,90	35,62	0,05	101,61	6,55	7,70	11,67	776,80	0,20	0,20	388,31	373,00	759,69	370,56	380,85	0,00	187,92	188,46	187,31	187,36
11-03	5,30	7,79	20,70	11,57	28,90	35,62	0,05	101,61	6,74	7,71	11,67	774,98	0,20	0,20	387,54	372,01	758,23	370,05	380,20	0,00	187,21	188,66	187,22	187,53
12-03	5,30	7,79	20,70	11,57	28,90	35,62	0,05	101,61	6,67	7,70	11,57	775,42	0,20	0,20	387,87	372,28	758,79	370,06	380,70	0,00	187,21	188,80	187,28	187,57
13-03	5,30	7,79	20,70	11,57	28,90	35,62	0,05	101,61	6,99	7,67	11,50	777,46	0,20	0,08	387,78	374,39	761,15	369,98	380,66	0,00	186,89	188,53	188,23	187,22
14-03	5,30	7,79	20,70	11,57	28,90	35,62	0,05	101,61	7,26	7,66	11,48	776,43	0,20	0,00	388,30	373,12	760,64	370,54	381,05	0,00	186,88	188,65	188,80	187,21
15-03	5,30	7,79	20,70	11,57	28,90	35,62	0,05	101,61	7,23	7,67	11,50	774,89	0,20	0,00	386,85	374,67	760,71	371,01	381,07	0,00	187,32	189,25	187,52	187,73
16-03	5,30	7,79	20,70	11,57	28,90	35,62	0,05	101,61	7,25	7,72	11,57	289,73	484,11	0,00	385,76	375,25	759,99	370,65	380,85	0,00	187,72	187,17	187,77	188,07
17-03	5,50	7,82	19,50	11,84	29,00	37,20	0,04	101,75	7,25	7,72	11,55	0,45	772,46	0,00	385,21	374,46	758,73	369,79	380,50	0,00	187,96	186,25	188,02	188,34
18-03	5,50	7,82	19,50	11,84	29,00	37,20	0,04	101,75	7,52	7,71	11,53	0,49	773,73	0,00	385,80	373,87	758,69	369,83	379,93	0,00	187,83	186,18	187,90	188,24
19-03	5,50	7,82	19,50	11,84	29,00	37,20	0,04	101,75	7,78	7,70	11,44	0,49	774,46	0,00	386,58	373,99	759,62	369,48	379,98	0,00	187,73	186,05	187,78	188,16
					· · ·																			

The imported data as wells as the simulation results are shown on sheet 'Simulaties', partly also in graphs using standard Excel functions for graphs.

This sheets also indicates out-of-range data for all inline measurements, by using Excel's 'Conditional Formatting'.

																via	Sim_Rong	je of Sim_
Temperatuur (ºC)	"uitPGIM" - rownr Simulationr	11 1	12 2	13 3	14 4	15 5	16 6	17 7	18 8	19 9	20 10	21 11	22 12	23 13	24 14		Sim	<u>ulatie</u> 14
Mengbekken - lab Mengbekken - continue Aarroer IZF - continue	Temperatuur	vr	25	20	mo.	di	wo	do	vr	25	20	mə	di	wo	do			do
	Mengbekken - continue Mengbekken - lab Aanvoer L2F - continue	6-mrt 6,0 4,3 4,8	7-mrt 5,9 4,3 5,0	8-mrt 6,1 4,3 5,2	9-mrt 6,4 4,3 5,4	10-mrt 6,6 <mark>5,3</mark> 5,6	11-mrt 6,7 5,3 5,7	12-mrt 6,7 5,3 5,7	13-mrt 7,0 5,3 5,7	14-mrt 7,3 5,3 5,9	15-mrt 7,2 5,3 6,0	16-mrt 7,3 5,3 6,1	17-mrt 7,3 5,5 6,1	18-mrt 7,5 5,5 6,1	19-mrt 7,8 5,5 6,1		19	<mark>-mrt</mark> 7,8 <mark>5,5</mark> 6,1
	Verschil mengbekken	1,7	1,6	1,8	2,1	1,3	1,4	1,4	1,7	2,0	1,9	2,0	1,8	2,0	2,3	>2		2,3
9	Verschil continue	1,2	1,0	0,9	1,0	0,9	1,1	1,0	1,3	1,4	1,2	1,2	1,2	1,5	1,7	>2		1,7
1																		
0 5-mt 7-mt 9-mt 11-mt 13-mt 15-mt 17-mt 19-mt 23-mt																		
nH (-)	PH	vr 6-mrt	25 7-mrt	20 8-mrt	mə 9-mrt	di 10-mrt	wo 11-mrt	do 12-mrt	vr 13-mrt	25 14-mrt	20 15-mrt	ma 16-mrt	di 17-mrt	wo 18-mrt	do 19-mrt		19	do J-mrt
Alexabelian bioarce Alexabelian continue	Mengbekken - continue Mengbekken - lab corr.	7,72 7,99	7,73 7,99	7,74 7,99	7,70 7,99	7,70	7,71 7,95	7,70	7,67	7,66 7,95	7,67 7,95	7,72 7,96	7,72 7,97	7,71 7,97	7,70 7,97			,70 (,97
81	Verschil mengbekken	0,27	0,26	0,24	0,28	0,25	0,24	0,26	0,28	0,30	0,28	0,24	0,25	0,26	0,28	> 0,10	0	,28
80	Mengbekken - lab	7,81	7,81	7,81	7,81	7,79	7,79	7,79	7,79	7,79	7,79	7,79	7,82	7,82	7,82		7	1 <mark>82</mark>
79	Als lab-temp = 0 :	20,6	20,6	20,6	20,6	20,7	20,7	20,7	20,1	20,1	20,7	20,7	13,5	10,5	20			20
78	Mengbekken - lab temp	20,6	20,6	20,6	20,6	20,7	20,7	20,7	20,7	20,7	20,7	20,7	19,5	18,5	19,5		1	.9,5
17 martine and	lafi coagulatie	7.35	7.35	7.36	7.35	7.39	7.39	7.39	7.41	7.43	7 4 4	7 4 4	7.43	7.41	7.38		7	138 11
76	Effl. cosgulatie	7,03	7,04	7,03	7,03	7,03	7,06	7,07	7,07	7,08	7,08	7,06	7,06	7,05	7,04		i	04 cc
75	Em. cascade	0,10	0,10	0,12	0,10	0,12	0,10	0,10	0,61	0,60	0,20	0,10	0,10	0,10	0,10			(10 CO
5-mit 7-mit 9-mit 15-mit 15-mit 15-mit 17-mit 19-mit 21-mit																		
7	Zuurstof	vr 6-mrt	25 7-mrt	20 8-mrt	mo 9-mrt	di 10-mrt	wo 11-mrt	do 12-mrt	vr 13-mrt	25 14-mrt	zo 15-mrt	ma 16-mrt	di 17-mrt	wo 18-mrt	do 19-mrt		13	do f-mrt
Zuurstor (mg/IO ₂)	Mengbekken - continue Manabekken - lab	11,8	11,9	11,8	11,7	11,7	11,7	11,6	11,5	11,5	11,5	11,6	11,6	11,5	11,4			11,4
Mengbekken - isb Mengbekken - continue	mageana - ao	100		100		100	100	100	1,0	1.0	11,0	11,0	11,0	10,00	10,00			
14																		
11																		
5-mrt 7-mrt 9-mrt 11-mrt 13-mrt 15-mrt 17-mrt 19-mrt 21-mrt																		
	Overige	vr	20 7. met	20	mo Sumat	di	wo	do	vr 12-met	25	20	mo 16-met	di 17-met	wo	do 19.mm		10	do
Ca en HCO3 (mg/l)	Calcium	37	37	37	37	36	36	36	36	36	36	36	37	37	37		10	37
Calcium HCO3	NH4 (mg/l)	0,04	0,04	0,04	0,04	0,05	0,05	0,05	0,05	0,05	0,05	0,05	0,04	0,04	0,04		6	02
120	EGV-20 (mS-m)	29,0	29,0	29,0	29,0	28,9	28,9	28,9	28,9	28,9	28,9	28,9	29,0	29,0	29,0		2	.9,0
100																		
80													÷					
60	waterdebieten m.Sr	6-mrt	29 7-mrt	20 8-mrt	ma 9-mrt	ai 10-mrt	11-mrt	do 12-mrt	13-mrt	29 14-mrt	20 15-mrt	ma 16-mrt	17-mrt	wo 18-mrt	do 19-mrt		19	ao J-mrt
40	Mengbekken-1 Mengbekken-2	0,1	0,1 0,2	0,1 0,2	486,1 0,2	776,8 0,2	775,0 0,2	775,4	777,5 0,2	776,4	774,9 0,2	283,7 484,1	0,4 772,5	0,5 773,7	0,5 774,5		7	0,5 74,5
20	Mengbekken-3 Infl. coagulatie 1	772,1	772,5 386.3	772,5 388.4	288,6 387.8	0,2 388.3	0,2 387.5	0,2 387.9	0,1 387.8	0,0 388.3	0,0 386.9	0,0 385.8	0,0	0,0 385.8	0,0 386.6		3	0,0 86.6
S-mrt 7-mrt 9-mrt 13-mrt 13-mrt 15-mrt 17-mrt 19-mrt 21-mrt	Infl. coagulatie 2	373,3	374,5	372,6	372,5	373,0	372,0	372,3	374,4	373,1	374,7	375,3	374,5	373,9	374,0		3	74,0
	UV-1	370,1	370,9	370,8	370,7	370,6	370,1	370,1	370,0	370,5	371,0	370,7	369,8	369,8	369,5		3	69,5
NU4 (mm /)) == 501/20 (mS/m)	UV-2 UV-3	381,2	380,9	380,9	380,5	380,9	380,2	380,7	380,1	381,1	381,1	380,9	380,5	379,9	380,0		3	50,0 0,0
where (mg/i) en cov-zo (ms/m)	LZF-2 LZF-3	187,8 187,3	187,9 187,5	188,2 188,0	188,3 187,9	187,9 188,5	187,2 188,7	187,2 188,8	186,3 188,5	186,9 188,7	187,3 189,2	187,7 187,2	188,0 186,2	187,8 186,2	187,7 186,0		18	37,7 86,0
* wn+(mg/) * E0V-20 (mS-m)	L2F-4 12F-5	187,8 188,5	187,9 188,5	188,4	188,5 187,0	187,3 187,4	187,2	187,3 187,6	188,2	188,8	187,5	187,8 188,1	188,0 188,3	187,9 188,2	187,8 188,2		18	37,8 88,2
33																		
0,10 30		wr 6-mrt	25 7-mrt	20 8-mrt	mo 9-mrt	ai 10-mrt	wo 11-mrt	do 12-mrt	vr 13-mrt	25 14-mrt	20 15-mrt	mə 16-mrt	ai 17-mrt	wo 18-mrt	ao 19-mrt		19	l-mrt
	Mengbekken uit Coagulatie in	772,4 760,4	772,9 760,8	772,8 760,9	774,9 760,3	777,2 761,3	775,4 759,6	775,8 760,1	777,7 762,2	776,6 761,4	775,1 761,5	773,8 761,0	772,9 759,7	774,2 759,7	774,9 760,6		76	74,9 50,6

A combination of measured and calculated data is used for water quality control, in which data is shown graphically within the accepted operational range (green areas).

Lab 3.1 PHREEQXCEL for Pure water

Open AC4E_Lab_3_1.xlsm.

Enable Macros, if requested.

Select sheet 'Input'.

PHREEQC uses the keyword SOLUTION for defining a solution with a trailing number to distinguish between several solutions. Default values for a solution might be omitted. In this example all default values have been 'commented', by # at the beginning of each line, being the PHREEQC symbol for comment.

PHREEQC requires two calculation steps to determine the composition of a solution:

1. Initial solution calculation, to determine the composition per element

2. Final solution calculation, to determine species after electron balancing (fixed pH and pE). The keyword EQUILIBRIUM_PHASES is used as a dummy simulation to start the 'final calculation' for the solution:

Select sheet 'Run_Control'.

Click on 'Run PHREEQC' to start the PHREEQC calculation (and 'Ok' in case Messages are set TRUE). The calculation results are shown on sheet 'phreeqc_out':

X₿		? 📧	– 🗆 X
FIL	LE HOME INSERT PAGELAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER TEAM		Sign in 🔍
	-		- 1
A13	3 • $ \cdot \times \sqrt{f_x} $ Solution composition		v
- 41	A B C D E F G H I J K L M N O P Q	R	S 🔺
1 -			
2 1	Reading input data for simulation 1.		
4			
5	SOLUTION # default 1		
7	EQUILIBRIUM_PHASE		
8 8	Beginning of initial solution calculations.		
9.			
11 :	Initial solution 1.		
12			
13 -	Solution composition		
15	Elements Molality Moles		
16			
1/	Pure water		
19 -	Description of solution		
20			
21	$p_{H} = 7.000$ $p_{e} = 4.000$		
23	Specific Conductance $(\mu S/cm, 25^{\circ}C) = 0$		
24	Density (q/cm ²) = 0.99704		
26	Activity of water = 1.000		
27	Ionic strength = 1.007e-007		
28	Mass of water $(kg) = 1.000e+000$		
30	Total cathering (e)/ky) = 1.27e=005 Total cathering (mol/ky) = 0.000e=000		
31	Total CO2 (mol/kg) = 0.000e+000		
32	Temperature $(^{+}C) = 25.00$		
34	Percent error, 100*(Cat- An)/(Cat+ An) = -0.60		
35	Iterations = 0		
36	Total $H = 1.1101246+002$ Total $0 = 5.55622e+001$		
38			
39 -	Distribution of species		
40	Log Log mole V		
42	Species Molality Activity Molality Activity Gamma cm*/mol		
43			
44	01- 1010-007 1000-007 -0.993 -0.995 -0.000 -1.19 H+ 1.002-007 1.000-007 -7.000 -0.000 0.00		
10	() Run Control Innut Database phraser ant Output Messages @ : (
DEAD	· · · · · · · · · · · · · · · · · · ·		100 %
REAL			1 100 %

View the content of sheet 'phreeqc_out' and find the following marker lines:

- Reading input data for simulation 1.
- Beginning of initial solution calculations.
- Beginning of batch-reaction calculations.
- End of simulation.
- Reading input data for simulation 2.
- End of Run after xx.x Seconds.

The proper composition of the solution is obtained after the 'final calculation' (here the batch-reaction calculation). The differences between both calculations will be explained in Lab 3.4.

Both calculation sections contain the following subsections:

- Solution composition
- Description of solution
- Distribution of species
- Saturation indices.

Overview the content of these subsections to get familiar with its contents.

Charge balance

The final calculation shows a small error in the Electrical balance (-1.217 10^{-9} eq, or 0.60%). However this is still a relevant error compared to the (very low) concentrations of H⁺ and OH⁻. Electrical balance for H⁺ and OH⁻ can be defined by adding the word 'charge' after pH indicating that pH is to be adjusted to achieve charge balance.

Select sheet 'Input'.

Empty the yellow marked cell at the beginning of the line for pH (so remove #).

Select sheet 'Run_Control'.

Click on 'Run PHREEQC' to start the PHREEQC calculation (and 'Ok' in case Messages are set TRUE). The results on sheet 'phreeqc_out' show that the charge balance is achieved at pH 6.997.

Composition of Pure water at 25 °C

Description of solutions shows:

- pH of 6.997
- Temperature of 25 °C
- Specific Conductance 0 µS/cm, at the actual water temperature (now 25 °C)
 Specific Conductance is also known as Electrical conductivity (EC)
- Density of 0.99704 g/cm³ (or kg/L)
- Volume of the solution of 1.00297 L
- Volume is related to density, amount of substances and mass of water (1 kg)
- Ionic strength of 1.006 * 10⁻⁷ mol/kgw
- Very low Alkalinity, caused by H⁺ and OH⁻
- Perfect Electrical balance (percentage error 0.00 %).

Distribution of species shows:

- Values for Molality, Activity and Molar volume (mole V) per species, and log-values for Molality, Activity and Activity coefficient (Gamma).
- Substantial value for H_2O molality: $[H_2O] = 55.51$ mol/kgw (1 kg of water)
- Very low concentrations for H⁺ and OH⁻, related to the dissociation of water:
- $[H^+] = [OH^-] = 1.006 * 10^{-7} \text{ mol/kgw} (pKw = 13.995)$
- Nearly absence of dissolved O₂ and H₂, from the natural redox reaction of water

Saturation indices show:

- Values for Saturation Index (SI), Ion Activity Product (Ig IAP) and Equilibrium constant (Ig K) for each phase (by phase name), and the chemical formula of that phase
- Saturation Index for H₂O(g) of -1.50
- Vapour pressure of water ($p_a H_2O$) from $p_a = 10^{SI} = 10^{-1.50} = 0.0316$ atm (assuming ideal gas)
- Negligible gas pressures for dissolved O₂ and H₂ (from its SI values).

Density, pH and vapour pressure for other temperatures

The density and pH of Pure water depends on its temperature. This can easily be shown by altering the temperature of the solution.

Select sheet 'Input'.

Empty the yellow marked cell at the beginning of the line for temperature (so remove #).

Give 0.0 as temperature.

Select sheet 'Run_Control'.

Click on 'Run PHREEQC' to start the PHREEQC calculation (and 'Ok' in case Messages are set TRUE). The results on sheet 'phreeqc_out' show that at 0 °C charge balance is achieved at pH 7.469, and the density is now 0.99984 kg/L (3.88 % less than at 25 °C).

Repeating this for 100 °C gives a pH of 6.119, and a density of 0.95835 kg/L (0.25 % more than at 25 °C. The vapour pressure can be calculated from $p_a = 10^{SI} = 10^{-0.00} = 1.00$ atm (assuming an ideal gas). Water boils when this vapour pressure exceeds the actual pressure.

Note 1:

The calculation of pE for Pure water is unreliable with the used default settings. This is caused by the absence of stable redox-couple in the solution.

The accuracy for pE might be improved by:

- setting a lower convergence tolerance for iterations (see Help/Manual under keywords SELECTED_OUTPUT (-high_precision true) and/or KNOBS (-convergence_tolerance 1e-12)
- introducing a dummy species H2O-0.01 (see Help/Manual under keyword KNOBS).

For Pure water the latter option has the largest impact.

Note 2:

More precise values for Specific Conductance and SI (for vapour pressure of water) can be obtained with SELECTED_OUTPUT and/or USER_PRINT.

The vapour pressure of water can also be calculated by defining a gas phase, with PR_P("H2O(g)").

Answer the following questions using the content of sheet 'phreegc.out':

#	Ouestions		Answers
1	How many calculations steps are needed	Α	1
-	to determine the composition of a	B	2
	solution?	Ċ	3
	(select 1)	D	4
2	What are the internal quantities in	А	quantities conform input values and units
	PHREEOC for solutions?	В	molality + moles
	(select 1)	С	mg/L + g
		D	molarity + moles
3	What is the unit of Molality?	А	mol/kgw
	(select 1)	В	mol/L
		С	g/kgw
		D	g/L
4	Which calculated (not input) parameters	Α	Density (g/cm ³)
	are includes in the Description of the	В	Specific Conductance (µS/cm)
	solution section?	С	Ionic strength (mol/kgw)
	(select 1 or more)	D	Electrical balance (eq)
5	What is the pH of pure water at 25 °C?	А	7.469
	(select 1)	В	7.0
		С	6.997
		D	6.119
6	How many elements are presented in the	А	1
	Distribution of species section?	В	2
	(select 1)	С	3
		D	4
7	How many species are presented in the	А	2
	Distribution of species section?	В	3
	(select 1)	С	4
		D	5
8	How many gases are presented in the	A	
	Saturation indices section?	В	2
	(select 1)	С	3
		D	4

Lab 3.2 PHREEQC input for SOLUTION

Parameter / Element		Unit	Value
Temperature	t	°C	10
Hydrogen ion activity	pН	-	7.3
Oxygen	O ₂	mg/L as O ₂	11
Calcium	Ca ²⁺	mg/L as Ca	56
Magnesium	Mg ²⁺	mg/L as Mg	5.6
Sodium	Na+	mg/L as Na	7
Potassium	K+	mg/L as K	2
Bicarbonate *	HCO3 ⁻	mg/L as HCO₃	149
Chloride	Cl⁻	mg/L as Cl	9
Nitrate	NO3⁻	mg/L as NO ₃	10
Sulphate	SO4 ²⁻	mg/L as SO₄	39

The composition of the example drinking water for this Lab is:

* Assume: $[HCO_3^-] = Alkalinity$

Open AC4E_Lab_3_2.xlsm. Enable Macros, if requested. Select sheet 'Input'. This sheet shows the PHREEQC code for this example, with explanation for each line of code (after #):

PHREEQC uses the keyword SOLUTION for defining a solution with a trailing number to identify the solution. The composition of the solution is specified in the solution data block. Concentrations per elements requires the element name, the concentration, the concentration unit and the molar mass (or its chemical formula). Units might be omitted if they corresponds with the specified general unit (mg/L in this case), molar masses might be omitted if they corresponds with the specification in the database. In this example other molar mass specifications should be set for Alkalinity and Nitrate. Molar masses are required for calculating mg into moles.

The 'elements' Nitrogen, Sulphate and Oxygen are included as their respective oxidation states N(+5) as in NO_{3} , S(+6) as in SO_{4}^{2} and O(0) as in O_{2} . In the database stimela.dat these elements are defined with multi oxidation states.

The elements Ca, Mg, Na, K, and Cl are defined as single oxidation state elements. Alkalinity is defined as a special 'element'.

Select sheet 'Database'.

Look into the section SOLUTION_MASTER_SPECIES to check the specifications (name, prime species, molar mass and/or chemical formula) of aforementioned elements and oxidation states ('redox elements'). Special attention should be given to all forms of nitrogen (N) with their molar mass of N (default unit 'as mg/L N').

PHREEQC requires two calculation steps to determine the composition of a solution:

1. Initial solution calculation, to determine the composition per element

2. Final solution calculation, to determine species after electron balancing (fixed pH and pE). The keyword EQUILIBRIUM_PHASES is used as a dummy simulation to start the 'final calculation' for the solution.

Both calculation steps are included in a single 'simulation'. PHREEQC Runs can be divided into several simulations, separated by the keyword END. The 'End of file' of the input file always starts a 'simulation'. To avoid an 'empty simulation' the keyword END should not be included as the last line of the input file.

Read the input code for this example. Further information on the syntax can be obtained in the PHREEQC Help files and documentation.

Answer the following questions using the text of Paragraph 3.3 and the PHREEQC code in this example:

#	Questions		Answers
1	What is de PHREEQC keyword for the	А	WATER
	input of the water composition?	В	SOLIDS
	(select 1)	С	COMPONENTS
		D	SOLUTION
2	All units in the input should be in the	А	per litre (/L)
	same group. What are the 3 groups of	В	per kg solution (/kgs)
	concentration units in PHREEQC input?	С	per m ³ (/m3)
	(select 3)	D	per kg water (/kgw)
3	The input sets Units as mg/L.	А	g, mg, μg
	What are valid element quantity units?	В	kg, g, mg, μg
	(select 1 or more)	С	mol, mmol, µmol
		D	kmol, mol, mmol, µmol
4	Units are set as mg/L.	А	µg/L
	What are valid input units for solutions?	В	mg/kgw
	(select 1 or more)	С	ppm (used as m/m in mg/kgs)
		D	ppm (used as m/v in mg/L)
5	Oxygen concentration is mol O / kgw.	А	02 11
	The mean oxygen content is 11 mg/L.	В	O2 11 mg/L
	How should the oxygen content of 11	С	O(0) 11 as O
	mg/L be coded in PHREEQC, with units	D	O(0) 11 as O2
	set as mg/L?		
	(select 1)		
6	How is HCO_3^- given in this PHREEQC	А	C(4)
	input?	В	HCO3
	(select 1 or more)	С	Alkalinity
		D	С
7	What is the PHREEQC comment marker?	А	#
	(select 1 or more)	В	Rem
		С	
		D	Comment
8	What is de PHREEQC keyword for the end	А	CALCULATE
	of the simulation input, which starts the	В	END
	calculation/simulation?	С	(end of input file)
	(select 1 or more)	D	END_SOLUTION

Lab 3.3 PHREEQXCEL input for SOLUTION

Parameter / Element		Unit	Value
Temperature	t	°C	10
Hydrogen ion activity	pН	-	7.3
Oxygen	O ₂	mg/L as O ₂	11
Calcium	Ca ²⁺	mg/L as Ca	56
Magnesium	Mg ²⁺	mg/L as Mg	5.6
Sodium	Na+	mg/L as Na	7
Potassium	K+	mg/L as K	2
Bicarbonate *	HCO3 [−]	mg/L as HCO ₃	149
Chloride	Cl-	mg/L as Cl	9
Nitrate	NO3⁻	mg/L as NO ₃	10
Sulphate	SO4 ²⁻	mg/L as SO ₄	39

The composition of the example drinking water for this Lab is identical to Lab 3.2:

* Assume: $[HCO_3^-] = Alkalinity$

Open AC4E_Lab_3_3.xlsm. Enable Macros, if requested. Select sheet 'Raw water'. This sheet shows a PHREEQXCEL input sheet for this example:

XI 🔒 🗧	o. Ģ. ÷		AC4E_Lab	3_3.xlsm - Excel			? 🗈 – 🗆 🗙
FILE	HOME INSERT PAGE LAYOUT	FORMULAS DATA RE	VIEW VIEW DEVEL	OPER TEAM			Sign in 🔎
G5	\cdot : $\times \checkmark f_x$						~
A	B	C D E	F G	H I J	K L M	N O	P Q A
1 2 3 Drinking	ywater composition						
4 General	Temperature pH Oxygon	t °C pH -	10 7,3				
7 Cations	Calcium Magnesium Sodium	Ca mg/L Mg mg/L Na mg/L	56 5,6 7				
10 11 Anions	Potassium Alkalinity (as HCO3) Chloride	K mg/L HCO3 mg/L Cl mg/l	2 149 9				
13 14	Nitrate Sulfate	NO3 mg/L SO4 mg/L	10 39				
16 17	Run Pl	HREEQC					
18 19							
	Raw water Run_Control In	nput Database phreed	qc.out Output Me	ssages 🕂 🕂 i	4	# @ M _	▶ 100 %

The green section includes the input parameters and their respective units, the yellow section contain the input values. The input values are linked to the PHREEQC code on sheet 'Input', converting of the numeric values into text strings, with points as decimal sign and without thousands separators. This conversion is performed by the Excel functions FIXED and SUBSTITUTE. The function FIXED(<number>;<x>;TRUE) creates text for <number> with <x> decimals and 'no_commas'. The function SUBSTITUTE(<number-text>;",";".") changes all decimal commas into points, in case the international setting of the user creates decimal commas. Combining these 2 functions gives a generic number conversion into proper PHREEQC code.

The 'Run PHREEQC' button has been copied from the sheet 'Run_Control'. This enables the user to start the PHREEQC Run without shifting to the sheet 'Run_Control'.

Select sheet 'Input':

XII .	5 ° ° ÷					AC	4E_Lab_3_3.xlsn	n - Excel							?	不	- 0	з ×
FILE	HOME INSE	RT PAGE LAYOUT	FORM	/ULAS DA	TA REVIEW	VIEW	DEVELOPER	TEAM									Sign	i in 🔍
																	-	
D4		fr -sur	RSTITUTE	(EIXED/'Rawy	water'IE4-1-TRU	-).0 0.0 0 <u>)</u>												
04			55111012		water :r4,1,1KO	-11 - 1 - 1												•
A	A B C	DE	F	G H	I J	K	L M	N	0	P	Q R	S	Т	U	V	W	Х	
2 5014	UTTON 1																	
3	# user data																	
4	temp	10.0																
5	pH	7.30	nite mo	lar mass or														
7	O(D)	11.0 m	o/L as	I O	as viormulas													
8	Ca	56.0 m	g/L as	Ca														
9	Mg	5.6 m	g/L as	s Mg														
10	Na	7.0 m	g/L as	s Na														
11	K	2.0 m	g/L as	s K														
12	Alkalinity	149.0 m	g/L as	# HCO3														
13	UL N(E)	9.0 m	g/L as g/T as	- NO2														
15	S(6)	39.0 m	g/L as g/L as	5 504														
16	0.07		g/ 2 - u.															
17	# PHREEQC dat	a																
18	-water	1																
19	units	mg/L																
20	redox	0(-2)/0(0)																
21	pe	4.0																
23	pressure	1.0																
24	propuls																	
25 EQU:	ILIBRIUM_PHASES 1	Electron balancin	ıg															
26																		
27							1			1								
	Raw wate	er Run_Control	Input	Database	phreeqc.out	Output	Messages	(+)		•								
READY	H												₩ 8	- 🛄			-+ 8	0 %
																	_	

Compare the input code with the input code of Lab 3.2.

The extended comments in the input code has been deleted.

The concentration values have been linked to their corresponding cells on sheet 'Raw water'. All elements are specified with their chemical formula for the calculation of the molar masses as well as the units, which corresponds with the units on the sheet 'Raw water'. This method prevents common mistakes caused by omitting this information forcing PHREEQC to use the data from the database and the general setting for units.

All other items in the input code are identical the input code of Lab 3.2.

Answer the following questions using the text of Paragraph 3.3 and this Lab, and the PHREEQC code in this example:

#	Questions		Answers
1	What value for the NO ₃ ⁻ content should	А	Nitrate as mg NO3 per Litre
	be entered as value in the input table?	В	NO3 in mg/L
	(select 1 or more)	С	NO3 in mg N/L
		D	NO3 in mg/kgw
2	How is NO ₃ ⁻ given in this PHREEQC input	А	NO3
	code?	В	NO3-1
	(select 1 or more)	С	Ν
		D	N(5)
3	Assume that the input code was N instead	А	N(5) + N(3) + N(0) + N(-3)
	of N(5). Which concentration was set by	В	NO3- + NO2- + N2 + NH4+
	that value?	С	N(+5) + N(+3) + N(0) + N(-3)
	(select 1 or more)	D	Sum of all oxidation states of N
4	Assume that the user likes to give the	А	mg/L as N(5)
	Nitrate concentration as mg/L N. What	В	mg/L as N-total
	should be the corresponding input code?	С	mg/L as N
	(select 1)	D	mg/L NO3 as N
5	Which EXCEL function converts a number	А	CHAR
	to text?	В	FIXED
	(select 1)	С	STRING
		D	SUBSTITUTE
6	Which EXCEL function is used to convert	А	CHAR
	decimal commas to decimal points?	В	FIXED
	(select 1)	С	STRING
		D	SUBSTITUTE
7	The input code for SOLUTION contains	А	SOLUTION nr. 1
	the line "-water 1". What does this mean?	В	All solutions in 1 bottle
	(select 1)	С	Solution contains 1 kg of water
		D	Solution volume is 1 litre
8	The input code for SOLUTION contains	А	Density type is 1
	the line "density 1". What does this	В	Density of solution is 1 kg/L
	mean?	C	Density of water is 1 kg/L
	(select 1)	D	Density should be calculated by PHREEQC

Lab 3.4 PHREEQXCEL input for SOLUTION_SPREAD

Open AC4E_Lab_3_4.xlsm. Enable Macros, if requested. Select sheet 'Raw water'. This sheet shows a PHREEQXCEL input sheet for 3 water samples:

x∎	5.	⊘					AC4E	_Lab_3_4.xls	m - Excel						? [不 -		×
FIL	HOM	IE INSERT	PAGE LAYOUT	FORMU	LAS DAT	A REVIE	W VIE	W DEVE	LOPER	TEAM						9	ign in	0
			c C															_
D7	*		\sqrt{Jx} 7,1															۷
A	В	C	DE	F	G	Н	1	J	K	L	М	N	 0	Р	Q		R	
1	Drinking	vator cample	e.															
3	Drinking	water sample																
4	Solution	General		Cations				Anions				Reference						
5	Nr	t	pH O2	Ca	Mg	Na	К	HCO3	CI	NO3	SO4	Description						
6		°C	- mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L							
7	1	10	7,1 11	56	5,6	7	2	149	9	10	39	Sample 1						
8	2	10	7,2 11	56	5,6	7	2	149	9	10	39	Sample 2						
9	3	10	7,3 11	56	5,6	7	2	149	9	10	39	Sample 3						
10																		
11																		
12			Run PHRE	EEQC														
13																		
14																		-
	•	Raw water	Run_Control	Input	Database	phreeqc.c	out O	utput M	essa	+ : •							Þ]
READ	(🗄]		- 1	+	100 9	6

The water samples are presented in a spread-sheet layout with columns for water quality parameters. Again, the green section includes the input parameters and their respective units, the yellow section contain the input values. The input values are linked to the PHREEQC code on sheet 'Input' as in Lab 3.3.

Select sheet 'Input':

X		5.0	- -						AC4E	_Lab_3_4	.xlsm - Ex	cel							?	A	- 🗆	×
F	ILE	HOME	INSERT	PAGE LAY	OUT	FORMULAS	S DA	TA REVI	EW VIE	W D	EVELOPE	R TE	AM								Sign ir	
A		-	\times	f _x																		~
1	А	В	С	D	E	F	G	Н	1	J		К	L	М	N	0	Р	Q	R	S	Т	
2	SOLU	TION SPREAD																				
3		# PHRE	EQC data																			
4		-water		1.0																		
С 6		units		mg/L	0.																	
7		De		4.0	07																	
8		densit	y	1.0																		
9		pressu	re	1.0																		
10																						
11		‡ user	data	0(0)	C -	¥-					11/5		10	Deservices								
12	NUMB	er temp	pn	mg/T. as	mor/T. as	img/L as	na imer/T.	as immr/T, a	a 'mor/T. a	s ma/L	as imm/) D Lasim	(o) m/T.as	SO4	101							
14	1	10.0	7.10	11.0	56.0	5.6	7.0	2.0	149.0	9.0	10.	0 3	9.0	Sample 1								
15	2	10.0	7.20	11.0	56.0	5.6	7.0	2.0	149.0	9.0	10.	0 3	9.0	Sample 2								
16	3	10.0	7.30	11.0	56.0	5.6	7.0	2.0	149.0	9.0	10.	0 3	9.0	Sample 3								
17																						
18	HSE	Solution	1	- ROUTLT		ASES 1 B	lectron	balancin		- EN	n											
20	USE	Solution	2	; EQUILI	BRIUM PH	HASES 1 E	lectron	balancin	1	; EN	D											
21	USE	Solution	3	; EQUILI	BRIUM PH	HASES 1 B	lectron	balancin		; EN	D											
22					_																	
23																						-
	4	 Ra 	w water	Run_Contro	ol In	out Da	tabase	phreeqc	out O	utput	Messa	+	÷ •								[Þ
REA	.DY	1														▦	E				-+ 80	%

The keyword SOLUTION_SPREAD is used to define all samples as PHREEQC solutions, including general data settings followed by specific data per sample.

Electron balancing is done by 'final calculations' per solution. In these code lines the symbol ';' indicates an end-of-line marker, allowing for single line coding per calculation/simulation. Both the raw water sheet and the input sheet might be extended with new lines in case more samples exist. This can be done by simple copy/paste of lines, in both sheets. The relative cell addressing in Excel provide for proper cell references between raw water sheet and input code lines.

Answer	the following	auestions using	the text of this	Lab, and the PHREEC	OC code in this example:
		9.000.00.00			

#	Questions		Answers
1	How is the solution number specified	Α	USE SOLUTION <x></x>
	here?	В	In column Number
	(select 1)	С	In column Description
		D	Automatically by each new line
2	How is HCO ₃ ⁻ given in the PHREEQC input	А	C(4)
	code?	В	HCO3
	(select 1 or more)	С	Alkalinity
		D	С
3	How many solutions can be entered via	А	3
	SOLUTION_SPREAD?	В	20
	(select 1)	С	Limited by PHREEQC version
		D	Limited by computer memory
4	What is given in the first column heading	А	Element names from applied database
	per solution parameter?	В	Species names from applied database
	(select 1)	С	Free names
		D	Chemical elements from periodic table
5	How many decimal digits are allowed in	А	0
	input values?	В	2
	(select 1 or more)	С	> 2
		D	> 10
6	All units in the input should be in the	А	per litre (/L)
	same group. What are the 3 groups of	В	per kg solution (/kgs)
	concentration units in PHREEQC input?	С	per m ³ (/m3)
	(select 3)	D	per kg water (/kgw)
7	What is the PHREEQC `end-of-line'	А	#
	marker?	В	EOL
	(select 1 or more)	С	;
		D	
8	What is de PHREEQC keyword for the end	A	CALCULATE
	of the simulation input, which starts the	В	END
	calculation/simulation?	С	(end of input file)
	(select 1 or more)	D	END_SOLUTION

Lab 3.5 PHREEQC output for SOLUTION

Open AC4E_Lab_3_5.xlsm (AC4E_Lab_3_3.xlsm with additional setting to print Alkalinity). Enable Macros, if requested.

Select sheet 'Raw water'.

Press the button 'Run PHREEQC' to start the calculations. The calculation results are shown on sheet 'phreeqc.out' which is the Return-sheet as specified on the sheet 'Run_Control'.

View the content of sheet 'phreeqc_out' and find the following marker lines:

- Reading input data for simulation 1.
- Beginning of initial solution calculations.
- Beginning of batch-reaction calculations.
- End of simulation.
- Reading input data for simulation 2.
- End of Run after xx.x Seconds.

The proper composition of the solution is obtained after the 'final calculation' (here the batchreaction calculation). Simulation 2 is an 'empty simulation' without input code and without calculation results. This additional 'empty simulation' was initiated by the 'end-of-file' of the input code.

Solution calculation results are presented in the following sections:

- Solution composition
- Redox couples (only for initial calculations)
- Description of solution
- Distribution of species
- Distribution of alkalinity
- Saturation indices.

Overview the content of these subsections to get familiar with its contents.

Test A

Answer the following questions using Paragraph 3.4 and content of the 'initial solution calculation' block in sheet 'phreeqc.out':

#	Questions		Answers
1	In the Solution composition section all input concentrations are recalculated to which quantities?	A B C D	quantities conform input values and units molality + moles mg/L + g molarity + moles
2	How many elements are given in the Solution composition section? (<i>select 1</i>)	A B C D	16 14 10 9
3	This section also includes calculated values for Total Carbon and Total CO2. Which statement is true? (<i>select 1 or more</i>)	A B C D	Different terms for the same parameter Total CO2 is CO ₂ content in solution Total CO2 includes CH ₄ Total CO2 is Total Inorganic Carbon
4	The Redox couples section gives com- binations of oxidation states for elements as defined in SOLUTION_SPECIES in stimela.dat, for elements given in the input. Which redox couples are given? (<i>select 1 or more</i>)	A B C D	N(0)/N(5) N(-3)/N(5) O(-2)/O(0) S(-2)/S(6)
5	In the Distribution of species section the calculation is based on which pe-value? (<i>select 1</i>)	A B C D	4.000 0.8238 14.6627 Average value of Redox couples
6	Which input elements are distributed into more oxidation states? (<i>select 1 or more</i>)	A B C D	C Ca S O
7	Which element has the most species? (<i>select 1</i>)	A B C D	Ca S C Na
8	What kind of components are in the Saturation indices section? (<i>select 1 or more</i>)	A B C D	Dissolved gases Ion pairs Gases in gas phase Components with defined solid phases

In the final solution calculation redox reactions are allowed to proceed until an electron balance is achieved, for which a single value for pE can be reported.

The main differences between the initial and final solution calculations are:

- Alkalinity, under Solid composition in initial calculation, is replaced by data for the Element C in final calculation
- all oxidation states under Solution composition in initial calculation, are changed to Elements in final calculation
- total mass (or moles) per element is identical for initial and final calculation
- pH is recalculated in final calculation ('Charge balance' by redox reactions)
- pE is calculated in final calculation ('Adjusted to redox equilibrium')
- the 'Redox couples' section is absent in Simulation 2 (not relevant)
- all oxidation states per Element are included in the Distribution of species in final calculation, with additional new species
- new Saturation indices are included in final calculation, related to the additional new species.

Test B

Answer the following questions using Paragraph 3.4 and content of the 'final solution calculation' (or 'batch reaction calculation') block in sheet 'phreeqc.out':

#	Questions		Answers
1	How many simulations are included in the	А	2 and 2
	input code and how many solution	В	1 and 2
	calculations were done?	С	2 and 1
	(select 1)	D	1 and 1
2	Which keyword triggers the start of the	А	USE
	final solution calculation (with electron	В	END
	balancing)?	С	EQUILIBRIUM_PHASES
	(select 1)	D	SOLUTION
3	Which elements are included in the	А	Alkalinity
	'Solution composition' of the initial	В	S(6)
	solution calculation which are not included	С	Са
	in final solution calculation?	D	O(0)
	(select 1 or more)		
4	Which values under Description of	А	Percent error
	solution are unchanged in the final	В	pE
	solution calculation?	С	Specific Conductance
	(select 1 or more)	D	Volume
5	Which oxidation states of element N are	А	N(-3)
	included in the final calculation?	В	N(0)
	(select 1 or more)	C	N(+3)
		D	N(+5)
6	Which equations for the concentration of	A	N(5) initial = $N(5)$ final
	Nitrogen (N) are true (by definition)?	В	N(5) initial = N final
	(select 1 or more)	C	N(5) initial = $N(5)+N(3)+N(0)+N(-3)$ final
_		D	N(3) initial = $N(3)$ final
/	How many oxidation states (or redox	A	3
	elements) are included in the Solution	В	2
	composition' of final calculation?	C	1
	(select 1)	D	0
8	Which species has the largest visual	A	NO2 ⁻
	change in molar concentration in the final	В	
	calculation?	C	NO3 ⁻
	(select 1)	D	N2

Lab 4.1 Lined output from PHREEQC

Open AC4E_Lab_4_1.xlsm. Enable Macros, if requested. Select sheet 'Input':

XII 🔒	∽ -	¢~ ∓					AC4E	_Lab_4_1.xlsm	- Excel								?		n x
ETI E		TNICEPT	DAGELA		DIVINI													Sim	n in 🚺
1100	TIONIL	. 114561(1	FAULLA	1001 10	INITIOLAS	DATA NL	VILVY VILVY	DEVELOPE	1 DAIVI									Jig	m
A1	Ψ.	\pm \times \cdot	f <i>f</i> x																~
		6	D		0	. I .		1.1.1	M N	0	P	0	D	6	т.				
1	- ·	C	0		9		JK	-	III IN	0		v.	K	3				v v	
2 PRINT																			
3	-rese	t	fals	se															
4	-user	_print	true	•															
5 6 USED	DDINT																		
7	-star	t																	
8		10 PI	RINT "pe			", STR_	F\$(-LA("e-"),	8,2)											
9		20 PI	RINT "pH			", STR	F\$(-LA("H+"),	8,2)											
10		30 PI	RINT "Elec	trical Con	ductivity	(EC) ", STR_	F\$(SC/10,8,2)	, " mS/m"											
11	-end																		
12																			
14 PRINT					# added to	o previous P	RINT definiti	n											
15 #	-echo	input	true		# true pr:	ints non-com	ment lines fr	om the inpu	t code										
16 #	-head	lings	true	•	<pre># true pr:</pre>	ints the tit	les and headi	ngs that id	entify the	beginnir	ng of ea	ch type	of cal	culatio	n				
17 #	-tota	ls	true	2	<pre># true pr:</pre>	ints the sec	tions 'Soluti	on composit	ion' and '	Descripti	ion of s	olution	•						
18 #	-eh		true	2	<pre># true pr:</pre>	ints the sec	tion 'Redox c	ouples' (in	itial calc	ulation o	only)								
19 #	-spec	ies	true	2	<pre>true pr:</pre>	ints the sec	tion 'Distrib	ution of sp	ecies'										
20 #	-aixa	ration indi	true		# true pr:	ints the sec	tion 'Distrib	ion indices	Kalinity.										
22 #	-11907	nrint	true		# true pr	ints the inf	ormation defi	ned in a US	ED DOTNT &	ata block	-								
23 #	-cens	or species	0.05		# prints of	only species	concentratio	ns larger t	han 5% of	the eleme	ent conc	entrati	on						
24																			
25																			
26			-			1													
27			R	un PHREEQC															
29																			
30																			
31 SOLUT	ION	1	Exar	mple drinki	ng water														
32	‡ use	r data																	
33	temp	10	0.0																
34	рн	7.	. 30																
		Run_Control	Input	Database	phreeq	c.out Outp	ut Message	. +											Þ
READY.	-											_		III II	I 🗆	1		-+	80 %

Overview the code lines under PRINT and USER_PRINT. Detailed information on the syntax of both Keywords and PHREEQC BASIC can be found in the Help-files and documentation for PHREEQC.

Press the button 'Run PHREEQC' to start the calculations. The output results are shown on sheet 'phreeqc.out' which is the Return-sheet as specified on the sheet 'Run_Control'.

XI .	5.0							AC4E	_Lab_4_1.xlsm	- Excel									? [不 —		×
FILE	HOME	INSERT	PAGE LAYOU	T FOR	MULAS	DATA	REVIEW	VIEW	DEVELOPE	R T	EAM										Sign ir	0
A2	-	\times \checkmark	fx Re	ading inp	ut data for	simula	tion 1.															*
A	В	С	DE	F	G	Н	I J	К	L	М	N	0	Р	۵	R	S	Т	U	N	/	W	
2 Readi	inc <mark>i</mark> input d	ata for s	imulation 1.																			
4 5	PRINT																					
6 7		reset	Us	false er print					-													
8 9 pe 10 pH 11 Elect 12 13	trical Cond	uctivity	4. 7. (EC) 24.	00 30 69 mS/1	m				_													
14 15 pe 16 pH 17 Elect 18 19	trical Cond	uctivity	14. 7. (EC) 24.	66 30 69 mS/1	m																	•
4 1	• Ru	n_Control	Input D	atabase	phreeqc.	.out	Output	Messages	•													Þ
READY	1															▦					+ 80	%

Try out the effect of removing one or more comment markers (#) in the yellow section of sheet `Input' and rerun PHREEQC to see the effect in the output.

Answer the following questions using data from sheets 'Input' and 'phreeqc.out':

#	Questions		Answers
1	Which keyword masters the printing to	А	USER_OUTPUT
	the lined output in sheet 'phreeqc.out'?	В	PRINT
	(select 1)	С	USER_PRINT
		D	SELECTED_OUTPUT
2	Which setting controls the printing of the	А	-totals
	section 'Description of solution' to the	В	-eh
	output?	С	-alkalinity
	(select 1)	D	-saturation_indices
3	Which setting controls the printing of the	А	-totals
	section 'Distribution of alkalinity' to the	В	-eh
	output?	С	-alkalinity
	(select 1)	D	-saturation_indices
4	Which setting prints a limited number of	А	-species
	species instead of all species?	В	-max_species
	(select 1)	С	-part_species
		D	-censor_species
5	What marks begin and end of BASIC	А	begin / end
	statements in the USER_PRINT block?	В	- begin / -end
	(select 1)	С	start / end
		D	-start / -end
6	Which operations can be defined in de	А	Print internal values
	USER_PRINT block?	В	Print formatted values
	(select 1 or more)	С	Change solution composition
		D	Calculate values
7	Which BASIC function gives pH?	А	PH
	(select 1)	В	LOG("H+")
		С	-LA("H+")
		D	LA("H+")
8	Which setting for censor-species results in	А	5%
	2 species in Alkalinity?	В	0.05
	(select 1 or more)	С	0.01
		D	0.001

Lab 4.2 Tabulated output from PHREEQC

Open AC4E_Lab_4_2.xlsm. Enable Macros, if requested. Select sheet 'Input'.

x 🛛 🔒	5 - (¢° + ∓							AC4E_	_ab_4_2.	dsm - Exc	:el										?	T	- 0	×
FILE	HOME	INSERT	PAG	GE LAYOUT	FOR	MULAS	DATA	REVIEW	VIEW	DEVEL	OPER	TEAM												Sign i	in 🍳
A1	Ŧ	: X	√ j	fx																					*
A	В	С	D	E	F	G	H	I J	К	L	М	N		0	Р	Q	R	5	;	Т	U		V	W	
2 SELEC	TED_OUT	PUT					÷	kolom																	
3	-rese	t		false																					
4	-high	precision	1	true																					
5	-simu	lation		true			ŧ	A																	
6	-stat	e		true				В																	
1	-solu	tion		true				C																	
9	-step -nH			true				2																	
10	-pe			true			- 1	F																	
11	-temp	erature		true			- ÷	G																	
12	-alka	linity		true			÷	H																	
13	-ioni	c_strength	1	true			+	I																	
14	-wate	r		true			+	J																	
15	-char	ge_balance	2	true			÷	K																	
16	-perc	ent_error		true				L																	
17	-tota	19		Call Con	NC02-			MN																	
19	-gatu	ration inc	lices	Calcite	Aragonit	Gimeiim		DST																	
20	2404			02 (g) H2	0(a) C)2 (g)	- I	U V W																	
21	-acti	ve		true																					
22 #	-user	punch		false			÷	X etc																	
23																									
24																									
25 USER	PUNCH																								
26	-head	ing	EC (mS/m	1) Ca(mg/1	kgw) Ca	(mg/L)																			
27	-star	t 10	DIMON 9	C /1 0																					
20		20	DINCH T	OT ("Ca")	*GFW ("Ca	") +1000																			
30		30	PUNCH T	OT ("Ca")	GFW ("Ca	") +1000	 тот 	("water") /	SOLN VO	ъ															
31	-end																								
32																									
33																									
34				Run PHF	REEQC																				
35								_																	
30																									
38 SOLUT	TON	1		Example	drinking	vater																			
39	‡ use	r data																							
40	temp		10.0																						
41	pH		7.30																						-
	•	Raw water	Run	Control	Input	Databa	se p	hreeqc.out	Output	Me	ssages	(+)	: [•											Þ
READY.	30					-						_						₽	8	P]		1.		-+ 80	%

Overview the code lines under SELECTED_OUTPUT and USER_PUNCH. Detailed information on the syntax of both Keywords and PHREEQC BASIC can be found in the Help-files and documentation for PHREEQC. USER_PUNCH functions allow formatting of numbers with is not applied in PHREEQXCEL, since it has better and easier formatting options within Excel.

Press the button 'Run PHREEQC' to start the calculations. The output results are shown on sheet 'Output' which is the Return-sheet as specified on the sheet 'Run_Control'.

×		5 - d	÷								AC4E_L	ab_4_2.xls	m - Exce									? 📧	- 0	×
FILE		HOME	INSER	T PA	AGE LAYO	UT FC	RMULAS	DAT	A RE	VIEW	VIEW	DEVELO	PER	FEAM									Sign i	a 🔍
A1		-	\times	\checkmark	fx si	m																		*
4	A	В	С	D	E	F	G	Н	1.1	J	К	L	M	N	0	Р	Q	R	S	Т	U	V	W	
1 sim		state	soln	step	pH	pe	temp(C)	Alk(eq/kg	mu	mass_H	2(charge(e	pct_err	Ca(mol/k	C(mol/kg	m_Ca+2(n m_CO2(m	m_HCO3-	si_Calcite	si_Arago	r si_Gypsu	si_02(g)	si_H2O() si_CO2(g)) E
2 1		i_soln	1	-99	7,3	4	10	0,00244	0,00542	1	-5,8E-05	-0,82886	0,0014	0,00276	0,00133	0,00033	0,00241	-0,43367	-0,58881	-1,99162	-0,69725	-1,9106	-2,22041	2
3 1		react	1	1	7,3	14,6627	10	0,00244	0,00542	1	-5,8E-05	-0,82886	0,0014	0,00276	0,00133	0,00033	0,00241	-0,43367	-0,58881	-1,99162	-0,69725	-1,9106	-2,22041	2
4																								
5																								
6																								
7										_														
	•	R	aw watei	r Ru	n_Control	Inpu	t Dat	abase	phreed	c.out	Output	Mess	ages .	. 🕂	: ∢									Þ
READY	READY 🛅 🗏																							

Remove the comment marker (#) in the yellow cell of input code. Rerun the code and notice the effect in the output stream. The USER_PUNCH headings are still printed but the values are omitted.

Answer the following questions using data from sheets 'Input' and 'Output':

#	Questions		Answers
1	What is the sheet name for the tabulated	А	selected.out
	output of this Lab?	В	Output
	(select 1)	С	phreeqc.out
		D	output.out
2	What is shown in the column 'mu'?	А	Ionic strength (mmol/L)
	(select 1)	В	Ionic strength (mmol/kgw)
		С	Ionic strength (mol/L)
		D	Ionic strength (mol/kgw)
3	What is the 'state' of the solution in the	А	i_soln
	initial solution calculation?	В	soln
	(select 1)	С	solution
		D	react
4	What is the printed unit for the total	А	eq/L
	Alkalinity (Alk)?	В	meq/kgw
	(select 1)	С	eq/kgw
		D	mol/L
5	Which parameter value has been changed	А	sim
	in the final calculation?	В	pH
	(select 1)	С	pE
_		D	Any concentration
6	Which pE value is printed for the initial	А	Value pE from previous run
	solution?	В	Internal PHREEQC default value
	(select 1)	С	Calculated from redox-couple $O(-2)/O(0)$
-		D	Value pE from input code
/	Which parameters were unchanged in the	A	pE
	final calculation?	В	pct_err
	(select 1 or more)	C	si_H2U(g)
			Ca (mg/L)
8	HOW MANY PHREEQU BASIC functions	A	5
	were needed to calculate the calcium	В	4
	concentration in mg/L?		3
	(Select 1)	ען	Ζ

Lab 4.3 Multiple output streams from PHREEQC

Open AC4E_Lab_4_3.xlsm. Enable Macros, if requested. Select sheet 'Input'.

Overview the code lines under SELECTED_OUTPUT and USER_PUNCH and notice the output streams 1 and 2. Detailed information on the syntax of both Keywords and PHREEQC BASIC can be found in the Help-files and documentation for PHREEQC.

Press the button 'Run PHREEQC' to start the calculations. The output results in sheet 'Output2' are shown since this is the Return-sheet as specified on the sheet 'Run_Control'.

×I 🔒	5.0									AC4E_L	.ab_4_3.xls	m - Exce	I								? 📧	- 0	×
FILE	HOME	INSER	T PA	GE LAYOU	T FO	RMULAS	DAT	A RE	VIEW	VIEW	DEVELO	PER	TEAM									Sign in	
B2	Ŧ	: X	 j 	fx 24	,6949777	680804																	۷
A	В	C	D	E	F	G	н	1 I I	J	К	L	M	N	0	Р	Q	R	S	т	U	V	W	
1 sim	EC(mS/r	n) Ca(mg/kg	Ca(mg/L)																				пH
2 1	24,695	56,0195	55,9993																				
3 1	24,695	56,0195	55,9993																				
4																							
5																							
6																							
7																							
8																							-
	• I	Raw water	Run	_Control	Input	t Dat	abase	phreed	c.out	Output	Outp	ut2 .	. +	:									•
READY	1																E		<u> </u>			-+ 80 %	%

Look into sheet 'Output' for the other results.

Answer the following questions using data from sheets 'Input', 'Output' and 'Output2':

#	Questions		Answers
1	What is the sheet name for the	А	Output
	USER_PUNCH output of this Lab?	В	Output2
	(select 1)	С	phreeqc.out
		D	output.out
2	What is shown in the column 'mu'?	А	Ionic strength (mmol/L)
	(select 1)	В	Ionic strength (mmol/kgw)
		С	Ionic strength (mol/L)
		D	Ionic strength (mol/kgw)
3	What is the 'state' of the solution in the	А	i_soln
	initial solution calculation?	В	soln
	(select 1)	С	solution
		D	react
4	What is the printed unit for the total	А	eq/L
	Alkalinity (Alk)?	В	meq/kgw
	(select 1)	С	eq/kgw
		D	mol/L
5	Which parameter value has been changed	А	sim
	in the final calculation?	В	рН
	(select 1)	С	pE
		D	Any concentration
6	Which pE value is printed for the initial	A	Value pE from previous run
	solution?	В	Internal PHREEQC default value
	(select 1)	C	Calculated from redox-couple O(-2)/O(0)
		D	Value pE from input code
7	Which parameters were unchanged in the	A	pE
	final calculation?	В	pct_err
	(select 1 or more)	C	si_H2O(g)
		D	Ca (mg/L)
8	How many PHREEQC BASIC functions	A	5
	were needed to calculate the calcium	В	4
	concentration in mg/L?	C	3
	(select 1)	D	2

Lab 4.4 User defined functions in PHREEQC

Open AC4E_Lab_4_4.xlsm. Enable Macros, if requested. Select sheet 'Input'.

🚺 🔒 5° ở° ÷ AC4E Lab 4 4.xlsm - Excel ? 🗈 – 🗆 🗙 Sign in FILE HOME INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW DEVELOPER TEAM \cdot : $\times \checkmark f_x$ A1 ~ B C D E Α F G H I J K L M N O P Q R W CALCULATE_VALUES # Calculate EC from SC -start 10 SAVE SC/10 -end # Calculate Anion concentration from Charge Balance (=Cat-An) and Error (=(Cat-An)/(Cat+An))
Algorithm is less reliable at very small ERROR value
Charge Balance as Concentration (equal to CHARGE_BALANCE / TOT("water"))
Error as Fraction
Calculate by substitution Anion -start DELTA = TOT("charge") ERROR = PERCENT_ERROR/100 SAVE (DELTA/ERROR - DELTA)/2 10 20 30 -end Cation # Calculate Cation concentration from TOT("Charge") and "Anion" -start 10 SAVE CALC VALUE("Anion") + TOT("charge") RedoxPot -start 10 # Calculate RedoxPot from pe*ln(10)*R*T/F SAVE -LA("e-") * LOG(10) * 8.314 * TK / 96.485 -end SELECTED_OUTPUT ŧ kolon false -reset -high precision -simulation Talse true EC Cation Anion RedoxPot true true A BCDE calculate values -active -user_punch ŧ F etc EC(mS/m) Cat(mmol/kgw) An(mmol/kgw) RedoxPot(mV) ding -start
 PUNCH CALC_VALUE("EC")
 #
 Alternative:
 PUNCH SC/10

 PUNCH CALC_VALUE("Cation")
 #
 Alternative:
 PUNCH CALC_VALUE("Anion") + TOT("charge")

 PUNCH CALC_VALUE("Anion")
 #
 Alternative:
 PUNCH CALC_VALUE("Anion") + TOT("charge")

 PUNCH CALC_VALUE("RedoxPot")
 #
 Alternative:
 PUNCH CALC_VALUE("Anion") + 0.314 + TK /
 10 20 30 Alternative: PUNCH -LA("e-") * LOG(10) * 8.314 * TK / 96.485 40 -end Run PHREEQC Example drinking water ‡ user data temp pH element 10.0 7.30 ent concentration units molar mass or as <formula> Raw water Run_Control Input Database phreeqc.out Output Messages ... ① : 4 Þ ▦ ▣ ┍┐-----8 -+ 80 %

Overview the code lines under CALCULATE_VALUES with four user defined functions: EC, Anion, Cation and RedoxPot. Detailed information on the syntax of this Keyword and PHREEQC BASIC can be found in the Help-files and documentation for PHREEQC.

The results of the user defined functions are printed with SELECTED_OUTPUT and USER_PUNCH. It should be noticed that USER_PUNCH functions are identical to CALCULATE_VALUE. The latter is beneficial for functions used in other input code sections and/or simulations.

Press the button 'Run PHREEQC' to start the calculations. The output results on sheet 'Output' are shown since this is the Return-sheet as specified on the sheet 'Run_Control'.

xII .	5.	ð	~ .								AC4E_L	_ab_4_4.x	lsm - Exc	2l								? 🛧	- □	×
FILE	НО	ME	INSERT	PA	GE LAYO	JT FO	ORMULAS	DAT	a Re	VIEW	VIEW	DEVELO	PER	TEAM									Sign in	
D17		•	\times	✓.	fx																			۷
A		в	С	D	E	F	G	н	1.1	J	К	L	M	N	0	P	Q	R	S	Т	U	V	W	
1 sim	V_E	EC	V_Cation	V_Anion	V_Redox	FEC(mS/m) Cat(mmol	An(mmol	/ RedoxPo	t(mV)														пH
2 1	24,6	695	0,00348	0,00354	224,72	24,695	0,00348	0,00354	224,72															
3 1	24,6	695	0,00348	0,00354	823,754	24,695	0,00348	0,00354	823,754															
4																								1
5																								4
6																								
/											-													
	F	Ra	w water	Run	_Control	Inpu	rt Dat	abase	phree	qc.out	Output	Mes	sages	🕂										F
READY	1											_										•••••	- + 80	%

Answer the following questions using also the PHREEQC Help file on the Basic Interpreter:

#	Questions		Answers
1	What is the keyword for user defined	А	USER_FUNCTIONS
	functions in the input code?	В	CALCULATE_VALUES
	(select 1)	С	USER_FUNCTION
		D	FUNCTION
2	What marks begin and end of BASIC	А	begin / end
	statements of a user defined function?	В	- begin / -end
	(select 1)	С	start / end
		D	-start / -end
3	The result of the user defined function is	А	RESULT
	given on the last BASIC code line. Which	В	CALCULATE_VALUE
	keyword is used in this line?	С	SAVE
	(select 1)	D	FUNCTION
4	The result of user defined functions can	А	PRINT
	be printed in different output blocks.	В	USER_PRINT
	Under which keyword?	С	SELECTED_OUTPUT
	(select 1 or more)	D	USER_PUNCH
5	Which BASIC function is user to recall the	А	CALC_VALUE()
	result of a user defined function?	В	FUNCTION()
	(select 1)	С	UDF()
		D	CALCULATED_VALUE()
6	What is the unit for CHARGE_BALANCE in	А	mol/kgw
	the BASIC code?	В	mol
	(select 1)	С	eq/kgw
		D	eq
7	What is the unit for TOT() in the BASIC	А	mol/kgw
	code?	В	mol
	(select 1)	С	eq/kgw
		D	eq
8	What is the unit for TOT("water") in the	А	mol/kgw
	BASIC code?	В	mol
	(select 1)	С	kg
		D	eq

Lab 4.5 Output processing in Excel

Open AC4E_Lab_4_5.xlsm. Enable Macros, if requested. Select sheet 'Input'.

XI	- 5 -	¢~ ∓					AC4	E_Lab_4_5.xls	n - Excel									?	*	- 0	×
FILE	HOME	INSERT	PAGE LAYOUT	FORM	ULAS DAT	A REVIEW	VIEW	DEVELOPER	TEAM											Sign in	
A1	Ŧ	: 🗙	✓ fx																		*
1	A B	С	DE	F	G H	I J	К	L	M N	0	Р	Q	R	S	1	Г	U	V	W	×	
2 PR3 3 4	INT -cens	or_species	0.01																		
5 SEI	LECTED_OUT	PUT				+	kolom														
6	-rese	t	false																		
8	-high	precision	true																		
9	-simu	e .	true			-	B														
10	-De	-	true			1	č														
11	-tota	ls	Ca			÷	D														
12	-mola	lities	Ca+2 CaS	504 CaHCO3	+	+	EFG														
13																					
14																					
15 USE	ER_PUNCH																				
16	-head	ing	EC(mS/m) An(meq	(/kgw) Ca	t (meq/kgw)	+	HIJ														
17	-star	t de																			
10		20	PUNCH SC/IU Amion = (TOT/"	obargo") ((DEDCENT ED	DOD (100) - T(T ("abargo	")) /?	‡ Cald	wlate N	, from SC		n from	Chara	Pol	-	(-Cot-1		d Frra	× 1-1C	
20		30	PUNCH Anion * 1	000	(PERCENT_ER	KOR/100/ - 10	VI(CHarge	1 1 12	# Cons	ert to	mol/kaw	encraci	JII LLOM	chary	e bar	ance	(-cat 1	ui) an	u siio	1 (-(08	
21		40	PUNCH (Anion +	TOT ("cha	rge")) * 1	000			# Cald	ulate C	ation con	centrat:	ion from	m TOT ("Char	ge")	and "Ar	ion"			
22	-end																				
23																					
24																					
25			Run PH	REEQC																	
26																					
27																					
20 801	UTTON	1	Frample	drinking	water																
30	± 1198	r data	Trambie	arrinking	HOVEL																
31	temp		10.0																		
32	pH		7.30																		
33 🛊	eleme	nt	concentration w	units mo	lar mass or	as <formula></formula>															
34	0(0)		11.0 r	mg/L as	0																Ŧ
-	+	Raw water	Run_Control	Input	Database	phreeqc.out	Output	Messag	es (+)												F
DEADY								_					_	p.		a 100	1			- 1 - 00	ev
READY	ш.																, - –			- 80	70

Overview the code lines under SELECTED_OUTPUT and USER_PUNCH. Detailed information on the syntax of both Keywords and PHREEQC BASIC can be found in the Help-files and documentation for PHREEQC.

Press the button 'Run PHREEQC' to start the calculations. The output results are shown on sheet 'Raw water' which is the Return-sheet as specified on the sheet 'Run_Control'.

The PHREEQC results in sheet 'Output' have been post-processed using Excel options for calculations, text and number formatting, as well as graphical presentation of data. This setup enables users to modify these results to their own personal preferences in language, parameter names, units etc. without any modification in the PHREEQC code.

Answer the following questions using the input code and results in the Excel of this Lab:

#	Questions		Answers
1	How many rows are printed by the	А	1
	SELECTED_OUTPUT and USER_PUNCH	В	2
	blocks?	С	3
	(select 1)	D	4
2	How many columns are printed by the	А	3
	SELECTED_OUTPUT block?	В	5
	(select 1)	С	7
		D	10
3	How many columns are printed by the	А	3
	USER_PUNCH block?	В	5
	(select 1)	С	7
		D	10
4	How is the sequence of output from the	А	According to the input line
	SELECTED_OUTPUT block?	В	According to internal setting of PHREEQC
	(select 1 or more)	С	In random order
		D	In alphabetic order
5	How is the sequence of output from	А	According to the input line
	-totals and -molalities in the	В	According to internal setting of PHREEQC
	SELECTED_OUTPUT block?	С	In random order
	(select 1 or more)	D	In alphabetic order
6	What is the unit for -totals and -molalities	А	mol/kgw
	in the SELECTED_OUTPUT block?	В	mol
	(select 1)	С	mmol/kgw
		D	mmol
7	What is the benefit of presenting	А	Formatting of data
	PHREEQC results in Excel?	В	Calculated values from data
	(select 1 or more)	C	Combined in- and output
		D	Data presentation in different chart forms
8	What are the options for unit conversion	A	Using user defined functions in PHREEQC
	of PHREEQXCEL?	В	Using formulas under USER_PUNCH
	(select 1 or more)	C	Using formulas in Excel
		D	Using formulas under SELECTED_OUTPUT

Lab 4.6 User graphs in PHREEQXCEL

Open AC4E_Lab_4_6.xlsm. Enable Macros, if requested. Select sheet 'Input'.

Overview the code lines under USER_PUNCH and # USER_GRAPH.

Press the button 'Run PHREEQC' to start the calculations. The output results are shown on sheet 'Graph' which is the Return-sheet as specified on the sheet 'Run_Control'. This sheet also includes the data used for this graph and the graph that would have been created by the keyword USER_GRAPH.

Test

∆nswer	the	following	auestions.
AUSWEI	uie	TOHOWING	questions.

#	Questions		Answers
1	Which keyword is used to get the data for	А	PRINT
	the graph (x and values)?	В	USER_PUNCH
	(select 1)	С	USER_PRINT
		D	SELECTED_OUTPUT
2	Which columns of sheet Output contains	А	A and B
	the x and y values for the graph?	В	C and D
	(select 1)	С	E and F
		D	F and G
3	What determines in which the columns	А	Internal PHREEQC settings
	these x and y values are printed?	В	Random selected by PHREEQC
	(select 1)	С	User code on sheet Input
		D	User code under USER_GRAPH
4	How many simulations were done in the	А	1
	PHREEQC calculation Run?	В	2
	(select 1)	С	4
		D	34
5	How many solution calculations were	А	1
	done in the PHREEQC calculation Run?	В	2
	(select 1)	С	4
		D	34
6	How many graph lines (x-y sets) are	А	1
	defined in the Excel graph?	В	2
	(select 1)	С	3
		D	4
7	Which Excel chart type was used to create	А	Line
	the graph?	В	X Y (Scatter)
	(select 1)	С	Pie
		D	Bar
8	What determines the graph format, font,	A	Internal PHREEQC setting
	colours etc. for the graph?	В	Internal Excel setting (fixed)
	(select 1)	C	User defined format settings
		D	User input in PHREEQC code

Lab 5.1 Concentrations, density and charge balance

Open AC4E_Lab_5_1.xlsm. Enable Macros, if requested. Select sheet 'Raw water'. This water sample is equal to the sample of Chapter 3, with an additional input field for Density of the solution.

The input values are given in mg/L (mass per volume of solution). PHREEQC converts the values to mol/kgw (molality as amount of substance per mass of water) using the density of the solution, for which the input value is estimated at 1.000000 kg/L.

Press the button 'Run PHREEQC' to start the calculations. The output results are shown on sheet 'Raw water' which is the Return-sheet as specified on the sheet 'Run_Control'.

PHREEQC calculates a density of 0.999941 kg/L.

Use this amount as input value, and press the button 'Run PHREEQC' again. Now the calculated density equals the estimated input value.

The molality concentrations of PHREEQC can be calculated as molarity concentrations (mol/L) using the 'Molality to Molarity factor' of 0.999638 kgw/L. Molarity concentrations have also been calculated in Excel using the input values and the molar masses of each component. Comparing the values shows equal values (in 4 decimals). The mg/L values show only differences in the third decimal of three components.

In practical applications for water treatment the differences between Molality and Molarity are often ignored. This approach seems to be acceptable at temperatures between 0 and 50 °C and low salinity, limiting the differences to less than 1-2%.

Charge balance

The charge balance can be calculated in Excel ignoring ion-pairs and assuming a fixed molar charge. Comparing the results of Excel and PHREEQC shows a charge difference of -0.058 meq/L for both calculation methods.

However the cations and anions in PHREEQC are both 0.127 meq/L lower, caused by ion-pairs. Ionpairs work equal to cations and anions, keeping the difference the same but reducing the total charge. Therefor also the 'percent error' is lower (0.80% versus 0.83%) since this error is relative to the total charge.

As can be seen in sheet 'phreeqc.out' the dominant ion-pairs in this sample are $CaSO_4$ and $CaHCO_3^+$ causing half of the difference between Excel and PHREEQC.

Charge balancing

PHREEQC can be used to balance the charge using the keyword 'CHARGE' for the component which is appointed to balance the charge.

Select sheet 'Input'.

Place a comment marker before the line 'Ca 56.0 mg/L as Ca' which activates the line 'Ca 56.0 mg/L as Ca charge'. In this case the calcium concentration will be modified to a value giving a full balance in charge.

Press the button 'Run PHREEQC' to start the calculations. The output shows a Calcium content of around 57.2 mg/L, which is 1.2 mg/L or some 2% higher as the original input value. Such a deviation falls within the accuracy range of most analyse methods.

Charge balancing might also be applied for estimating the concentration of a non-measured component.

Test

Answer the following questions:

#	Questions		Answers
1	With molar masses in the database, and	А	Volume of solution
	input concentrations in mg/L, which	В	Mass of water
	additional input parameter is applied by	С	Atomic weights
	PHREEQC for the conversion into Molality?	D	Density of solution
	(select 1)		
2	What are the calculated concentrations	А	10.999 / 11.000 mg/L
	for oxygen at a density of 1 kg/L versus	В	0.3437 / 0.3438 mg/L
	0.999994 kg/L from PHREEQC?	С	0.3439 / 0.3439 mg/L
	(select 1)	D	0.3438 / 0.3438 mg/L
3	Which concentration unit is applied by	А	mmol/kgw
	PHREEQC in the sheet 'Output'?	В	mg/L
	(select 1)	С	mol/kgw
		D	mg/kgw
4	How is the Molality to Molarity factor	А	MolalToMolar
	calculated by PHREEQC?	В	TOT("water")/SOLN_VOL
	(select 1)	С	Molal/Molar
		D	SOLN_VOL/TOT("water")
5	Which component has the largest effect	А	Alkalinity
	on charge balance in this example?	В	Calcium (Ca)
	(select 1)	С	Bicarbonate (HCO ₃)
		D	Sulphate (SO ₄)
6	What is the effect of ion-pairs on the	А	Nett balance (eq) stays the same
	charge balance in a solution?	В	Cation and Anion (eq) stay the same
	(select 1 or more)	С	Percent error decrease
		D	Percent error increase
7	What is an acceptable percent error in	А	2.5%
	charge balance according to Standard	В	1.0%
	Methods 1030E (for this anion charge)?	С	2.0%
	(select 1)	D	4.0%
8	What is the keyword to discard the input	А	charge balance
	concentration and calculate the value to	В	balance
	obtain full charge balance?	С	charge
	(select 1)	D	charging

Lab 5.2 Electrical Conductivity and Total Dissolved Solids

Open AC4E_Lab_5_2.xlsm. Enable Macros, if requested. Select sheet 'Raw water'. This water sample is equal to the sample of Lab 5.1, with an additional input field for measured Electrical Conductivity (EC-25).

x	ۍ 🖯	¢. ÷			AC4E_Lab_5_2.xlsm - Excel	5 – O X
F	ILE HO	ME INSERT PAGE LAYOUT	FORMULAS DA	TA REVIEW	V VIEW DEVELOPER TEAM	Sign in 🔍
F1	9 7	• : X / fr 255				
	Δ	B		E G		
1	Drinking wat	er composition	0 0 1			
3	General	Temperature	t 'c	10		
5		pH Oxygen	pH - O2 ma/L	7,3 11		
7 8	Cations	Calcium Magnesium	Ca mg/L Mg mg/L	56 5,6		
9 10		Sodium Potassium	Na mg/L K mg/L	7		
11 12	Anions	Alkalinity (as HCO3) Chloride	HCO3 mg/L CI mg/L	149 9		
13 14		Nitrate Sulfate	NO3 mg/L SO4 mg/L	10 39		
15 16	TDS	Total dissolved solids (excl. oxygen)	TDS mg/L	278	Excel	
17 18	Density	Density	rho kg/L	0,999941	calculated by PHREEQC	
19 20 21	EC-measured	Electrical Conductivity at 25 °C TDS / EC-25	EC-25 mS/m mg/L/mS/m	35,5 7,8	SM1030E: 5.5-7.0 EPA: 5,5-8.0	
22 23		Run PHRE	EQC			
25 26 27 28 29 20	EC-PHREEQC EC-ISO 7888	Electrical Conductivity at t °C Electrical Conductivity at 25 °C Ratio EC calculated / EC measured	EC-t mS/m EC-25 mS/m EC-ratio - dEC / dT % / °C	24,7 35,3 0,99 2,86%	calculated by PHREEOC PHREEOXCEL with ISO 7888 SM1630E: 0.94.1 cc. SD 7888	
31 32 33 34	EC-PHREEQC	Temperature of EC measurement Electrical Conductivity at 25 °C	t °C EC-25 mS/m dEC / dT % / °C	25,0 35,9 3,01% a	PHREEQC at 25 °C acc. PHREEQC	
35 36 37 38 39	Density	Density Mass of water Volume of solution Mass of solution (from density and yo	rho kg/L m kg V L lume) ka	0,999941 1,000000 1,000362 1,000303		
40 41 42	TDS	Mass of dissolved components	TDS mg/L	303 F	PHREEQC	
42	•	Raw water Run_Control	Input Database	phreeqc.or	ut Output Message (+) : (+)	
RE/	ADY 🔠					

Press the button 'Run PHREEQC' to start the calculations. The output results are shown on sheet 'Raw water' which is the Return-sheet as specified on the sheet 'Run_Control'.

Electrical Conductivity (EC)

For the sample water PHREEQXCEL calculates a value of 24.7 mS/m as being the conductivity at the actual water temperature of 10 °C.

In water treatment the Electrical Conductivity is normalized at 25 °C.

The EC at 25 °C is calculated at 35.3 mS/m with the temperature conversion formula of ISO 7888. This temperature factor amounts to 2.86% per °C.

The ratio EC calculated over EC measured amounts to 0.99, showing a very good compliance. The acceptable range according to Standard Methods 1030E is 0.9 - 1.1.

ISO 7888 promotes the measurement of Electrical Conductivity in a temperature controlled water bath at 25 °C. Changing the water temperature will not only change the diffusion and conductivity, but also the equilibrium constants of all related reactions.

This measurement procedure is simulated in PHREEQC (simulation 2) with the keyword 'REACTION_TEMPERATURE' with 25 °C. The simulation gives an EC value of 35.9 mS/m, with a temperature factor of 3.01% per °C.

Total Dissolved Solids

From the input concentrations in mg/L the Total Dissolved Solids (TDS) can be calculated in Excel as 278 mg/L.

PHREEQC lacks a function for the calculation of TDS. An attempt has been made to obtain TDS from PHREEQC values for solution density, solution volume and mass of water. This method gives a TDS value of 303 mg/L (109%) showing that the density model of PHREEQC cannot be applied for calculation of TDS. The calculation of TDS from molalities of all dissolved solids (non-gaseous components) is considered as 'too elaborated'.

Standard Methods 1030E proclaims the TDS over EC ratio as validation method for which an acceptable ratio between 5.5 and 7.0 (mg/L / mS/m) is mentioned. EPA gives a ratio range between 5.5 and 8.0. These wide ranges indicate a less appropriate validation method. Our sample water has a TDS over EC ratio of 7.8.

Test

Answer the following questions:

#	Questions		Answers
1	Which parameter is required in the	А	Specific molar conductivity
	PHREEQC database for calculating	В	Diffusion coefficient
	Electrical Conductivity?	С	Valance
	(select 1)	D	Ionic strength
2	What is the PHREEQC function for	Α	EC
	Electrical Conductivity (see sheet Input)?	В	Conduct
	(select 1)	С	SC
		D	SpecCond
3	What is the temperature for which EC is	А	25 °C
	calculated in PHREEQC for this sample?	В	20 °C
	(select 1)	С	15 °C
		D	10 °C
4	Why is the Electrical Conductivity changed	А	Diffusion coefficient change
	at a different temperature?	В	Viscosity change
	(select 1 or more)	С	Mean valance per element change
		D	Concentration change
5	What factor (% per °C) gives a reliable	А	1%
	estimate for EC change from 10 to 25 °C?	В	2%
	(select 1)	С	3%
		D	4%
6	What is the acceptable range for EC	А	0.99-1.01
	calculated over EC measured according to	В	0.98-1.02
	SM 1030E?	С	0.95-1.05
_	(select 1)	D	0.90-1.10
7	What is the most reliable calculation	Α	PHREEQC function TDS
	method for TDS in this sample?	В	Excel from input values
	(select 1)	C	PHREEQC combined with Excel
		D .	Internal Excel function
8	What is the acceptable range for TDS	A	5.0-7.0
	over EC measured (in mg/l / mS/m)	В	5.0-8.0
	according to EPA?	C	0.9-1.1
	(select 1)	D	0.5-0.8

Lab 5.3 Mixing water

Open AC4E_Lab_5_3.xlsm. Enable Macros, if requested. Select sheet 'Input'. Overview the code lines which are identical to the code lines of Lab 4.6, with the addition of 31 lines in which 31 mixing fractions are applied: 70 71 MIX 0.0000 ;2 21 ;1 1.0000 ;END # 0 72 MIX 0.0333 ;2 0.9667 ;END # 0,0333 22 ;1 ;1 0.0667 ;2 73 MIX 23 0.9333 ;END # 0,0667 74 MIX 0.1000 ;2 0.9000 ; END # 24 ;1 0,1

Press the button 'Run PHREEOC' to start the calculations. The output results are shown on sheet

etc.

The 31 mixing fractions are calculated by formulas in Excel.

'Graph' which is the Return-sheet as specified on the sheet 'Run Control'.

Calcite Equilibrium Calcite Equilibrium - equilibriun mixing_line <mark>-∆--</mark> 1:1 SI > 0.0 8 mol/kgw) T SI < 0.0 Hd CO2 7 000000 SI > 0.0 SI < 0.0 0 6 HCO3⁻ Total (mmol/kgw) Ca Total = Alkalinity / 2 (mmol/kgw)

In this Lab the green line for mixed solutions has been calculated. In Lab 4.6 a straight line between the 2 solutions points was assumed. In a HCO_3-CO_2 diagram this is actually true as is shown in the diagram on the left (Tillman's diagram). In a hardness-pH diagram the mixing line is a curve line showing that mixing soft water with a small amount of hard water has a large influence on pH and therefor on SI.

It also shows that soft water should have a higher pH than hard water, when both are in equilibrium with calcite. The background and consequences of these graphs will be discussed in Volume 2 and 3.

Notice that the column 'soln' in sheet 'Output' suggests that each mixed solution is numbered and Saved as Solution, which is not ('use solution 21' will result in a PHREEQC error).

Lab 5.4 Dosing of chemicals with REACTION

Open AC4E_Lab_5_4.xlsm. Enable Macros, if requested. Select sheet 'Raw water'. This water sample is equal to the sample of Lab 5.1 and Lab 5.2.

The input values on the upper part of this sheet are left unchanged. The lower part of this sheet gives some basis results of the calculated values for this 'raw water'. In this way this sheet is focussed on the raw water itself including validation of input data, which allows for checking of values for density, charge balance, Electrical Conductivity (if measured), molality (or concentrations) of relevant elements, saturation index (SI) for calcite etc.

Select sheet 'Water treatment'. This sheet contains input values for the added chemical and its dose. Fill in at the yellow input cells 'NaOH' as dosed chemical and a dosing level of 1.0 mmol/kgw. The total dosed amount is calculated in Excel as 1.00 mmol, from this dosing level multiplied by 1 kg of water.

The sheet 'Water treatment' also contains the calculated results, in tabular and graphical form. The latter is achieved by dividing the dosed amount into 20 steps via the input code line: REACTION 1; NaOH 1.00; 1.00000 mmol in 20 steps (see sheet 'Input')

Press the button 'Run PHREEQC' to start the calculations.

Excel returns on the same sheet 'Water treatment' being the Return-sheet as specified on the sheet 'Run_Control'.

Look to the non-linear graphs for pH, SI Calcite and EC, and explain their forms. Look to the linear graphs for CO₂-HCO₃-CO₃, Ca-Na-Alkalinity-Ctotal, and water-volume-density and explain their forms.

(*Hint: Reactions are CO*₂ + OH --> HCO₃ and CO₃²⁻ + OH -- > CO₃²⁻ + H₂O)

Repeat the calculations for the following doses:

-	Na ₂ CO ₃	adding 1.0 mmol/L

- CaCO₃ adding 1.0 mmol/L
- Ca(OH)₂ adding 0.5 mmol/L
- CO₂ removing 0.3 mmol/L (by adding -0.3 mmol/L)
- CO₂ removing 1.0 mmol/L (by adding -1.0 mmol/L)

Notice for the latter example that the amount of CO_2 is more than in the raw water. Nevertheless PHREEQC calculates the quality. Why?

Test

Answer the following questions:

#	Questions		Answers
1	How many simulations were done by	Α	1
	PHREEQC in each Run?	В	2
	(select 1)	С	21
		D	22
2	Which amount of NaOH (in mmol) was	А	0.0
	dosed in the first step for the example	В	1.0
	with NaOH?	С	0.95
	(select 1)	D	0.05
3	In which column of the sheet 'Output' is	А	D
	pH 'printed'?	В	E
	(select 1)	С	F
		D	G
4	Which parameter is linear with the dosed	А	рН
	amount of NaOH?	В	Na molality
	(select 1 or more)	С	Total Carbon molality
		D	Mass of water
5	The graph for Electrical Conductivity	А	Reaction temperature
	shows 2 different ranges. What causes	В	pH
	the breakpoint in this graph?	С	CO ₃ ²⁻ formation
	(select 1)	D	Na molality
6	The graph for mass of water shows 2	А	Reaction temperature
	different ranges. What causes the	В	pH
	breakpoint in this graph?	С	CO ₃ ²⁻ formation
_	(select 1)	D	H ₂ O formation
7	Which parameters are unchanged with	Α	Na molality
	increasing NaOH dosing?	В	Total Carbon molality
	(select 1 or more)	C	Alkalinity
		D .	Ca molality
8	Which parameters are unchanged with	A	Na molality
	increasing Ca(OH) ₂ dosing?	В	I otal Carbon molality
	(select 1 or more)	C	Alkalinity
		D	Ca molality

Lab 5.5 Dosing of chemicals with MIX

Open AC4E_Lab_5_5.xlsm.

Enable Macros, if requested.

Select sheet 'Raw water'. This water sample is equal to the sample of Lab 5.1, Lab 5.2 and Lab 5.4.

Select sheet 'Water treatment'. This sheet contains input values for the strength of HCl and the volume per dosing step.

Fill in at the yellow input cells '0.10' as HCl strength (Normality 0.10 mol/L) and a volume per step of 1.0 mL. The added volume after 30 steps is calculated in Excel as 30.0 mL.

The sheet 'Water treatment' also contains the calculated results, in tabular and graphical form. The applied PHREEQC code per step is: MIX 1; 1 1.0 ; 2 0.0010 ; END with increasing amount of volume for Solution 2 (see sheet 'Input', without volume/mass correction for densities of these two solutions).

Press the button 'Run PHREEQC' to start the calculations.

Excel returns on the same sheet 'Water treatment' being the Return-sheet as specified on the sheet 'Run_Control'.

Look to the graphs, and explain their forms.

Fill in at the yellow input cells '0.20' as HCl strength (Normality 0.2 mol/L). Press the button 'Run PHREEQC' to start the calculations. Now the graphs show the same shape but at half the volume.

Fill in at the yellow input cells '0.02' as HCl strength (Normality 0.02 mol/L) and 5 mL per step. Press the button 'Run PHREEQC' to start the calculations. Modify in Excel the x-axes of the graphs in order to show the equivalence points in each graph.

Test

Answer the following questions:

#	Questions		Answers
1	How many simulations were done by	Α	2
	PHREEQC in each Run?	В	3
	(select 1)	С	32
		D	33
2	Which amount of HCl (in mL) was dosed	А	0,10
	in the first step for the first example?	В	1,0
	(<i>select 1</i>)	С	30,0
		D	3,0
3	In which column of the sheet 'Output' is	А	D
	pH `printed'?	В	E
	(<i>select 1</i>)	С	F
		D	G
4	Which parameter is linear with the mixed	А	рН
	amount of HCl?	В	Cl molality
	(select 1 or more)	С	Total Carbon molality
		D	Mass of water
5	The graph for Electrical Conductivity	А	Reaction temperature
	shows 2 different ranges. What causes	В	H ⁺ increase
	the breakpoint in this graph?	С	CO ₂ formation
	(select 1)	D	Cl molality
6	The graph for HCO ₃ shows 2 different	А	Reaction temperature
	ranges. What causes the breakpoint in	В	H ⁺ increase
	this graph?	С	CO ₂ formation
	(select 1)	D	Cl molality
7	Which parameters are unchanged with	А	Cl molality
	increasing HCl dosing, disregarding the	В	Total Carbon molality
	dilution effect?	С	Alkalinity
	(select 1 or more)	D	Ca molality
8	Which parameters might be used for	А	рН
	determination of equivalence point in	В	EC
	Alkalinity measurements?	С	10 ^{-pH}
	(select 1 or more)	D	Cl

Lab 5.6 Reaction with solids in EQUILIBRIUM_PHASES

Open AC4E_Lab_5_6.xlsm. Enable Macros, if requested. Select sheet 'Raw water'. This water sample is equal to the sample of Lab 5.4 and 5.5.

Select sheet 'Water treatment'. This sheet contains input values for the applied chemical (NaOH, Na₂CO₃ or Ca(OH)₂) and the super-saturation after precipitation of calcite (SI-value). Fill in at the yellow input cells 'NaOH' as chemical, '1.00' as dose (in mmol/kgw) and '0.00' as SI after precipitation.

The sheet 'Water treatment' also contains the calculated results, in tabular and graphical form. The applied PHREEQC code for precipitation is:

EQUILIBRIUM_PHASES 1; Calcite 0.000 0.01 precipitate_only (see sheet 'Input'). Further details on this keyword can be found in the PHREEQC documentation.

Press the button 'Run PHREEQC' to start the calculations. Excel returns on the same sheet 'Water treatment' being the Return-sheet as specified on the sheet 'Run_Control'.

Try out the alternative chemicals, dosing's and SI-values as indicated on sheet "Water treatment'.

Lab 5.7 Gas transfer with GAS_PHASE

Open AC4E_Lab_5_7.xlsm.

Enable Macros, if requested.

This lab is used in the practicum part of TU Delft course 'Fundamentals of water treatment' in which CO_2 removal in a single step cascade aerator is measured with variable falling height. The experiment uses Delft drinking water which is acidified by HCl to convert HCO₃ into CO₂. This CO₂ is partly removed by cascade aeration. This removal can easily be measured by an increase of pH. PHREEQC is used for calculation of the relation between pH and CO₂ content, and to determine the apparent air-to-water ratio in cascade aeration.

Select sheet 'Raw water'.

The quality of Delft drinking water is obtained by using data from Evides. These parameters are mainly used by the course staff for estimating the required HCl dose. PHREEQC uses this data for calculating the ionic strength, for which the exact value is not very sensitive for the lab results. Relevant parameters for CO_2 removal (temperature, Alkalinity, and pH) are measured as part of the practicum.

Select sheet 'Input'.

Delft drinking water is entered as Solution 1 (Simulation 1), the influent of the cascade aeration as Solution 2 (Simulation 2). Simulation 3 determines the relation between removed CO₂ (negative dosing of CO₂) and pH. Simulation 4 to 8 calculates the CO₂ contents for the measured pH values, as concentration and as gas pressure (from $p_a = 10^{SI}$). Simulation 9 calculated the CO₂ content of water in equilibrium with atmospheric air (CO₂ eq), being the lowest CO₂ which can be achieved by aeration in an atmospheric environment (unlimited air-to-water ratio and full equilibrium between gas and water). Simulation 10-22 determines the relation between remaining CO₂ and air-to-water volume ratio RQ.

Select sheet 'Water treatment'.

This sheet contains input values and calculated results for this practicum.

Study this Excel workbook to understand its setup and the use of PHREEQC simulations.

Lab 6.1 Groundwater in PHREEQC

Open Lab_6_1.xlsm.

Enable Macros, if requested.

Select sheet 'Raw water', overview its content and notice the check-boxes for selecting inert or noninert elements (or redox-uncouples or redox-coupled elements) as well is the combo-box for selecting the leading redox couple for the 'initial calculation':

🕅 🔒 🐬 -	¢	AC4E_La	ab_6_1.xlsm - Excel	? 🗈 🗕 🗆 🗙
FILE HO	ME INSERT PAGE LAYOUT	FORMULAS DATA REVIEW VIEW	DEVELOPER TEAM	Sign in 🔍
D3	\bullet : $\times \checkmark f_x$ inert			~
A	В	C D E F G	H I J K L M	IN OPQRA
2 Anaerobic	groundwater composition		input output	
3	groundwater composition	oxydation state inert	mg/Lmmol/L mmol/kgw	
4 General	Temperature	t ℃	10,0	
6	pri Oxvaen	O(0) O2 ma/L	10.000000 0.313 0.313 abset	nt in anaerobic water
7	Methane	C(-4) CH4 mg/L	0,30 0,019 0,019	
8	Hydrogen sulfide	S(-2)	1,00 0,029 0,029	
10	Dissolved organic carbon	DOC mg/L C	3.5	
11 Cations	Calcium	Ca mg/L	66,3	
12	Magnesium	Mg mg/L	5,2	
13	Potassium	Na mg/L K mg/l	15	
15	Iron	Fe(+2) ✓ Fe mg/L	5,61 0,100 0,100	
16	Manganese	Mn(+2) Mn mg/L	0,18 0,003 0,003	
17 18 Anione	Ammonium Alkalinity (as HCO3)	N(-3) VIH4 mg/L C(+4) HCO3 mg/l	0,12 0,007 0,007	
19	Chloride	Cl mg/L	17,0	
20	Nitrate	N(+5) NO3 mg/L	0,07 0,001 0,001	
21	Nitrite	N(+3) ⊻ NO2 mg/L S(+6) SO4 mg/l	0,05 0,001 0,001	
23	Phosphate (ortho)	PO4 mg/L	0,57	
24				
25 Initial values	Electron activity	0(3)(00)	4,00 PHREEQC default value = 4.00	
27	INBUDY COUPIE	0(=2)/0(0)	O(-2)/O(0) Individent O2 should be present	
28				
29		RuirFineEuc		DE temp (C) / pH O2 (mg/L) 10 / 7 27 25 / 7 27 25 / 7 77
31				10
32 Results	Electron activity	pe -	4,00 14,68	1
33	Hydrogen activity	pH - doH -	7,27 0.00	0,000001
35			-,00	-,
36	Paur unter Run Control	Input Database phrases out Output	Massagas (A) : [4]	•
	Naw Water Run_Control	input Database prireeqc.out Output	wessayes (+) : 1	
READY 🛗				

This lab shows a typical composition of 'deep anaerobic groundwater', with the exception of an additional oxygen content of 10 mg/L ($pO_2 = 0.18$ atm at 10 °C). The latter resembles a realistic oxygen content after aeration, being the initial treatment process in natural groundwater treatment.

This lab starts with the determination of the relation between oxygen content and pE, with all other components set as inert elements.

Execute consecutive simulations (by pressing the 'Run PHREEQC' button) with input values for O_2 as 10, 1, 0.1 respectively 0.000001 mg/L. Write down the calculated pE values.

Repeat these calculations for a water temperature of 25 °C, with the same pH of 7.27.

Repeat these calculations for a water temperature of 25 °C, with a pH of 7.77.

Reset the input data to the original values (10 °C, 7.27 and 10.0 mg/L), and uncheck all inert components. Execute the simulation by pressing the 'Run PHREEQC' button.

Notice the changes and try to explain the differences for each component.

Repeat these simulations with individual components set as inert, and with different redox couples for the 'initial calculation'.

Test

Answer the following questions:

#	Questions		Answers
1	What are the minimum and maximum pE	А	13.06 - 14.68
	values obtained in the simulations with	В	11.00 - 15.00
	oxygen and inert components?	С	11.25 - 14.68
	(select 1)	D	11.81 - 13.37
2	Temperature and pH influences pE. What	А	Higher temperature, lower pH
	gives lower pE values?	В	Higher temperature, higher pH
	(select 1)	С	Lower temperature, lower pH
		D	Lower temperature, higher pH
3	Which oxidation states are not enabled as	А	C(+4)
	inert in this Lab?	В	S(+6)
	(select 1 or more)	С	N(0)
		D	N(+5)
4	Which concentrations are changed in the	А	Mn(+2)
	simulations when all components are	В	pH
	redox-coupled (not inert)? Why and how?	С	Alkalinity
	(select 1 or more)	D	S(+6)
5	Which concentrations are increased in the	А	O(0)
	simulations when all components are	В	N(+5)
	redox-coupled (not inert)? Why and how?	С	S(+6)
	(select 1 or more)	D	Alkalinity
6	What made methane (CH4) to be absent	А	Removed by aeration
	in simulations with redox-coupled oxygen?	В	Absorbed in Alkalinity
	(select 1)	С	Removed by bacteria
		D	Converted into CO2
7	Change O2 to 0.00, $C(-4)/C(4)$ as redox	А	Depends on the initial pE value
	couple and all components as redox-	В	-3,65
	coupled (no inert). Which pE is obtained?	С	-3,69
	(select 1)	D	Depends on the initial redox couple
8	And which pE is obtained if all but C(-4)	А	Depends on the initial pE value
	are set as redox-uncoupled (inert)?	В	-3,65
	(select 1)	С	-3,69
		D	Depends on the initial redox couple

Lab 6.2 Groundwater well fields

Open Lab_6_2.xlsm.

Enable Macros, if requested.

Select sheet 'Raw water', overview its content and notice the column with the actual flow calculated from data and On/Off settings on sheet 'Well field'. Also notice the column with measured values for EC (Electrical Conductivity) at 20 °C.

The graphs represent the calcium content respectively Electrical Conductivity of each individual well. It was shown by analyses of data from over 14 years of operation that the water quality of each well is nearly constant, but specific for each well:

This enables the prediction of the actual water quality based on their assumed quality and their actual flow.

Select sheet 'Well field', overview its content and notice the column with On/Off settings of each well. The actual flow of each well is nearly constant because of the characteristics of each well pump, and the hydraulics in the pipe system to the treatment plant.

The constant flow and quality of each well allow for predicting the actual water quality only based on the operating status (On/Off) of each well. This status can be set in the 'dashboard':

The PHREEQC model for this well field uses the MIX function with the actual flow (as m3/h) in the mixing fraction. Switch to the sheet 'Input' to overview the PHREEQC code for the simulations. The model simulations might be done at each change in pump status. This automated start-up is not included in this Lab.

Some parameters of the calculated water quality are shown in the 'dashboard'. The calculated values can permanently be compared to inline measurements being part of the treatment plant control system. This plant includes chemical softening in pellet reactors using lime. The lime dosing level depends on the actual water quality, which changes by each change in actual production or change in number and specific wells in operation.

Try out several pump settings to see the variation in water quality entering the treatment plant.

Lab 6.3 Groundwater treatment with aeration and filtration

Open Lab_6_3.xlsm.

Enable Macros, if requested.

Select sheet 'Raw water', overview its content and notice the two columns with yellow cells showing the water quality for slightly anaerobic groundwater respectively deep anaerobic groundwater. Further details on these examples can be found in the text book 'Drinking water - Principles and Practices' (de Moel a.o., 2006)

Select the radio button for 'Slightly'. The data is copied to the input cells for PHREEQXCEL (yellow with pixel pattern). Notice also the output from Excel calculations (grey cells), and output from PHREEQC (dark green cells). This data might support the user in validating the 'raw water quality'.

Press the button 'Run PHREEQC' to start the calculations. Excel returns on the sheet 'Water treatment' being the Return-sheet as specified on the sheet 'Run_Control'. This sheets show the results of 15 simulations, dealing with the processes within aeration and filtration of anaerobic groundwater. Overview all results.

Select sheet 'Raw water', and select the radio button for 'Deep'.

Press the button 'Run PHREEQC' to start the calculations

The results on the sheet 'Water treatment' shows that ammonium and manganese are not fully removed because of oxygen shortage for oxidation of these compounds. Further backgrounds of these phenomena will be discussed in Volume 2.

Select sheet 'Input', and overview the PHREEQC code for this Lab.

The input code contains a 'Water treatment' section.

Notice the code for aeration of each individual gas allowing for fine-tuning the composition of atmospheric air, as well as the removal efficiency of each gas by applying an 'effective RQ' (gas-to-water-volume ratio).

The filtration sections deals with all oxidation and precipitation processes. The conversion from redox-inert elements into redox-coupled elements is done with KINETICS+RATES. This conversion is based on the actual contents of the related element as well as the actual oxygen content.

Try out your own 'raw water quality' to see its behaviour in a water treatment plant using natural groundwater treatment processes.

Name	
Email	
Subject of thesis	

Lab	Question	Answer				Points
						0 or 1
Lab 3.1	1	А	В	С	D	
	2	А	В	С	D	
	3	А	В	С	D	
	4	А	В	С	D	
	5	А	В	С	D	
	6	А	В	С	D	
	7	А	В	С	D	
	8	А	В	С	D	
Lab 3.2	1	А	В	С	D	
	2	А	В	С	D	
	3	А	В	С	D	
	4	А	В	С	D	
	5	А	В	С	D	
	6	А	В	C	D	
	7	A	В	C	D	
	8	A	B	C	D	
Lab 3.3	1	A	B	C	 D	
-0.0 010	2	A	B	C	D	
	3	Δ	B	C	D	
	4	Δ	B	C C	D	
	5	Δ	B	C C	D	
	6	Δ	B	c c	D	
	7		B	C C	D	
	, o		D	C C	D	
lah 2 /	0	A 	D	<u> </u>	D	
Lau 3.4	1 2		D	C C	D	
	2		D	C C	D	
	5	A	D	C C		
	4 E	A	D	C C		
	5	A	D			
	0	A	В	C		
	/	A	В		D	
Lab 2 5a	8	A	B	<u> </u>	D	
Lap 3.5a	1	A	В	C	D	
	2	A	В	C	D	
	3	A	В	C	D	
	4	A	В	C	D	
	5	A	В	C	D	
	6	A	В	C	D	
	/	A	В	C	D	
	8	A	<u> </u>	<u> </u>	<u> </u>	
Lab 3.5b	1	A	В	C	D	
	2	A	В	C	D	
	3	A	В	C	D	
	4	A	В	C	D	
	5	A	В	C	D	
	6	A	В	С	D	
	7	A	В	С	D	
	8	A	В	С	D	
Total Labs	53					

Name	
Email	
Subject of thesis	

Lab	Question	Answer				Points
						0 or 1
Lab 4.1	1	А	В	С	D	
	2	А	В	С	D	
	3	А	В	С	D	
	4	А	В	С	D	
	5	А	В	С	D	
	6	А	В	С	D	
	7	А	В	С	D	
	8	А	В	С	D	
Lab 4.2	1	А	В	С	D	
	2	А	В	С	D	
	3	А	В	С	D	
	4	А	В	С	D	
	5	А	В	С	D	
	6	А	В	С	D	
	7	А	В	С	D	
	8	А	В	C	D	
Lab 4.3	1	Α	В	C	D	
	2	А	В	C	D	
	3	А	В	C	D	
	4	A	В	C	D	
	5	A	B	C	D	
	6	A	B	C	D	
	8 7	Δ	B	C C	D	
	8	Δ	B	C C	D	
lab 4 4	1	A	B	<u> </u>	D	
200 4.4	2	Δ	B	C C	D	
	2	Δ	B	C C	D	
	4	Δ	B	C C	D	
	5	Δ	B	C C	D	
	6	Δ	B	c c	D	
	7	Δ	B	C C	D	
	8	Δ	B	C C	D	
lah 4 5	1	Δ	B		D	
200 4.5	2	Δ	B	C C	D	
	2	Δ	B	C C	D	
	4	Δ	B	C C	D	
	5	Δ	B	C C	D	
	6	Δ	B	C C	D	
	7	Δ	B	c c	D	
	, 8	Δ	B	c c	D	
lah / 6	1	<u>^</u>	B			
200 4.0	2		B	C C	D	
	2		P D	C C		
	Л		D R	c c		
	4 E		Þ	C C		
	5 C		P	C C		
	0 7		D D	C C	U D	
	/		D D	C C	U D	
Total Lak	ŏ	А	D	L	U	
Total Lab	54					

Name	
Email	
Subject of thesis	

Lab	Question	Answer				Points
						0 or 1
Lab 5.1	1	А	В	С	D	
	2	А	В	С	D	
	3	А	В	С	D	
	4	А	В	С	D	
	5	А	В	С	D	
	6	А	В	С	D	
	7	А	В	С	D	
	8	А	В	С	D	
Lab 5.2	1	А	В	С	D	
	2	А	В	С	D	
	3	А	В	С	D	
	4	А	В	С	D	
	5	А	В	С	D	
	6	А	В	С	D	
	7	А	В	С	D	
	8	А	В	С	D	
Lab 5.3						
Lab 5.4	1	А	В	С	D	
	2	А	В	С	D	
	3	А	В	С	D	
	4	А	В	С	D	
	5	А	В	С	D	
	6	А	В	С	D	
	7	А	В	С	D	
	8	А	В	С	D	
Lab 5.5	1	А	В	С	D	
	2	А	В	С	D	
	3	А	В	С	D	
	4	А	В	С	D	
	5	А	В	С	D	
	6	А	В	С	D	
	7	А	В	С	D	
	8	А	В	С	D	
Lab 5.6						
Lab 5.7						
Total Labs	s 5					

Name	
Email	
Subject of thesis	

Lab	Question	Answer				Points
						0 or 1
Lab 6.1	1	А	В	С	D	
	2	А	В	С	D	
	3	А	В	С	D	
	4	А	В	С	D	
	5	А	В	С	D	
	6	А	В	С	D	
	7	А	В	С	D	
	8	А	В	С	D	
Lab 6.2						
Lab 6.3						
Total Lab	s 6					

Name	
Email	
Subject of thesis	

Lab	Question	Answer				Points
						0 or 1
Lab 3.1	1	А	В	С	D	1
	2	А	В	С	D	1
	3	A	В	С	D	1
	4	A	В			1
	5	A	В		D	1
	6	А	В	С	D	1
	7	А	В	С	D	1
	8	A	В	С	D	1
Lab 3.2	1	А	В	С	D	1
	2	A	В	С		1
	3	A	В	C	D	1
	4	A	В	C	D	1
	5	A	В	C	D	1
	6	A	В	\mathbf{C}	D	1
	7	A	В	С	D	1
	8	Α	В	С	D	1
Lab 3.3	1	A	В	С	D	1
	2	A	В	С	D	1
	3	A	В	C	D	1
	4	A	В	C	D	1
	5	A	В	С	D	1
	6	A	В	С	D	1
	7	A	В	C	D	1
	8	A	В	С	D	1
Lab 3.4	1	A	В	С	D	1
	2	A	В	C	D	1
	3	A	В	С	D	1
	4	A	В	С	D	1
	5	A	В	C	D	1
	6	A	В	С	D	1
	7	A	В	C	D	1
	8	A	<u> </u>	С	D	1
Lab 3.5a	1	A	В	С	D	1
	2	A	В	С	D	1
	3	A	В	С	D	1
	4	A	В	C	D	1
	5	A	В	C	D	1
	6	A	В	C	D	1
	7	A	В	\mathbf{C}	D	1
	8	A	B	C	D	1
Lab 3.5b	1	A	В	C	D	1
	2	A	В	\mathbf{C}	D	1
	3	A	В	C	D	1
	4	A	В	C	D	1
	5		В	C		1
	6	A	В	\mathbf{C}	D	1
	7	A	B	C	P	1
	8	A	В	С	Ď	1
Total Labs	3					48

Name	
Email	
Subject of thesis	

Lab	Question	Answer				Points
						0 or 1
Lab 4.1	1	А	В	С	D	1
	2	A	В	С	D	1
	3	A	В	С	D	1
	4	A	В	С	D	1
	5	А	В	С	D	1
	6	A	В	С	D	1
	7	A	В		D	1
	8	А	В	С	D	1
Lab 4.2	1	А	В	С	D	1
	2	А	В	С	D	1
	3	A	В	С	D	1
	4	А	В	C	D	1
	5	А	В	C	D	1
	6	Α	В	С	D	1
	7	А	В	C	D	1
	8	Α	В	С	D	1
Lab 4.3	1	Α	В	С	D	1
	2	А	В	С	D	1
	3	A	В	С	D	1
	4	А	В	C	D	1
	5	Α	В	0	D	1
	6	Α	В	С	D	1
	7	А	В	C	D	1
	8	Α	В	С	D	1
Lab 4.4	1	А	В	С	D	1
	2	Α	В	С	D	1
	3	Α	В	С	D	1
	4	A	В	C	D	1
	5	A	В	С	D	1
	6	A	В	С	D	1
	7	A	В	С	D	1
	8	A	В	<u> </u>	D	1
Lab 4.5	1	A	В	C	D	1
	2	A	В	\mathbf{C}	D	1
	3	A	В	C	D	1
	4	A	В	C	D	1
	5	A	В	C	D	1
	6	A	В	С	D	1
	7	A	В	C		1
	8	A	B	C	D	1
Lab 4.6	1	A	В	C	D	1
	2	A	В	C		1
	3	A	В	C	D	1
	4	A	В	\mathbf{C}	D	1
	5	A	В	C	D	1
	6	A	В	<u> </u>	D	1
	/	A	B	C	D	1
-	8	A	В	C	U	1
i otal Lab	s 4					48

Name	
Email	
Subject of thesis	

Lab	Question	Answer				Points
						0 or 1
Lab 5.1	1	А	В	С	D	
	2	A	В	С	D	
	3	A	В	С	D	
	4	А	В	С	D	
	5	Α	В	С	D	
	6	A	В	С	D	
	7	А	В	C	D	
	8	А	В	С	D	
Lab 5.2	1	А	В	С	D	
	2	А	В	C	D	
	3	А	В	С	D	
	4	A	В	C	D	
	5	A	В	C	D	
	6	А	В	С	D	
	7	А	В	С	D	
	8	Α	В	С	D	
Lab 5.3						
Lab 5.4	1	A	В	С	D	
	2	A	В	С	D	
	3	A	В	С	D	
	4	A	В	C	D	
	5	A	В	C	D	
	6	A	В	С	D	
	7	A	В	С	D	
	8	A	В	С	D	
Lab 5.5	1	A	В	C	D	
	2	A	В	С	D	
	3	A	В	С	D	
	4	A	В	C	D	
	5	A	В	С	D	
	6	A	В	\mathbf{C}	D	
	7	A	В	С		
	8	A	В	C	D	
Lab 5.6						
Lab 5.7						
Total Labs	5					

Name	
Email	
Subject of thesis	

Lab	Question	Answer				Points
						0 or 1
Lab 6.1	1	А	В	С	D	
	2	А	В	С	D	
	3	A	В	С	D	
	4	A	В	С	D	
	5	А	В	C	D	
	6	А	В	С	D	
	7	А	В	С	D	
	8	А	В	С	D	
Lab 6.2						
Lab 6.3						
Total Labs	s 6					

VOLUMES

Volume 1 Starting with PHREEQC for water treatment

- 1. Introduction
- 2. Using PHREEQXCEL
- 3. Drinking water in PHREEQC
- 4. Controlling output
- 5. Water treatment
- 6. Groundwater and redox reactions
- 7. Next steps

Volume 2 Drinking water with PHREEQC (*under development*)

- Introduction
 Drinking wate
 - Drinking water quality (*includes DW P&P chapter Water quality*)
 - 1 Concentrations (WQ 3.2)
 - 2 Ions in water (WQ 3.3)
 - 3 Gases in water (WQ 3.4)
 - 4. Acid base reaction (WQ 3.5 plus 'Ionization of water')
 - 5. Precipitation reactions (WQ 3.6)
 - 6. Redox reactions (WQ 3.7)
- 3. Validation of water analyses
- 4. Groundwater treatment (*includes DW P&P chapter Groundwater*)
 - 1. Treatment schemes (GW 4.1 4.2 4.3)
 - 2. Aeration and gas transfer (GW 4.5 plus 'Gases in water')
 - 3. Groundwater filtration (GW 4.6)
 - 4. Neutralization (GW 4.7)
 - 5. Softening (GW 4.8)
 - 6. Membrane filtration (GW 4.9)
 - 7. Ion exchange
- 5. Surface water treatment (*includes DW P&P chapter Surface water*)
 - 1. Coagulation (flocculation-sedimentation-filtration)
 - 2. Activated carbon filtration
 - 3. Disinfection
- 6. Kinetics of treatment processes
 - 1. Softening in pellet reactors
 - 2. Limestone contactors
- 7. Next steps

Volume 3 Waste water with PHREEQC

- 1. Introduction
- 2. Waste water quality
- 3. Biological treatment
- 4. Physical-chemical treatment
- etc.

Volume 4 Industrial water with PHREEQC

- 1. Introduction
- 2. Cooling water systems
- 3. Boiler water systems

etc.

(under development)

- (under development)